留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡流冷却推力室流场特征与性能仿真

李恭楠 俞南嘉 路强

李恭楠, 俞南嘉, 路强. 涡流冷却推力室流场特征与性能仿真[J]. 航空动力学报, 2014, 29(2): 420-426. doi: 10.13224/j.cnki.jasp.2014.02.022
引用本文: 李恭楠, 俞南嘉, 路强. 涡流冷却推力室流场特征与性能仿真[J]. 航空动力学报, 2014, 29(2): 420-426. doi: 10.13224/j.cnki.jasp.2014.02.022
LI Gong-nan, YU Nan-jia, LU Qiang. Simulation of flow characteristics and performance of vortex cooling thrust chamber[J]. Journal of Aerospace Power, 2014, 29(2): 420-426. doi: 10.13224/j.cnki.jasp.2014.02.022
Citation: LI Gong-nan, YU Nan-jia, LU Qiang. Simulation of flow characteristics and performance of vortex cooling thrust chamber[J]. Journal of Aerospace Power, 2014, 29(2): 420-426. doi: 10.13224/j.cnki.jasp.2014.02.022

涡流冷却推力室流场特征与性能仿真

doi: 10.13224/j.cnki.jasp.2014.02.022

Simulation of flow characteristics and performance of vortex cooling thrust chamber

  • 摘要: 针对2000N气氢/气氧涡流冷却推力室,采用三维全尺寸计算模型开展了仿真研究,得到了流场速度分布特点,验证了涡流冷却推力室内具有双向涡旋结构,内外涡流分界面约占涡流冷却推力室圆柱段半径的86%,燃烧区域约占涡流冷却推力室圆柱段半径的70%.分析表明:外层涡流主要受来流速度与涡流冷却推力室几何参数影响,内层涡流在黏性、燃烧等作用下室压、密度稳定.侧壁温度平均为388K,比冲效率达92%以上,仿真结果与试验对比一致.

     

  • [1] Chiavertini M J, Malecki M J, Sauer J A, et al.Vortex combustion chamber development for future liquid rocket engine applications[R].AIAA 2002-4149, 2002.
    [2] Chiaverini M J, Malecki M J, Sauer J A, et al.Vortex thrust chamber testing and analysis for O2/H2 propulsion applications[R].AIAA 2003-4473, 2003.
    [3] Chiavertini M J, Sauer J A, Munson S M, et al.Laboratory characterization of vortex-cooled thrust chamber for methane/O2 and H2/O2[R].AIAA 2005-4131, 2005.
    [4] Munson S M, Saucer J A, Rocholl J D, et al.Development of a low-cost vortex-cooled thrust chamber using hybrid fabrication techniques[R].AIAA 2011-5835, 2011.
    [5] Knuth W H, Gramer D J, Chiaverini M J, et al.Preliminary CFD analysis of the vortex hybrid rocket chamber and nozzle flow field[R].AIAA 98-3351, 1998.
    [6] 孙得川, 白荣博, 刘上.涡流冷壁推力室传热模型分析计算[J].计算机仿真, 2011, 28(4):87-91. SUN Dechuan, BAI Rongbo, LIU Shang.A heat transfer model for vortex cool-wall rocket engine chamber[J].Computer Simulation, 2011, 28(4):87-91.(in Chinese)
    [7] 唐飞, 李家文, 常克宇.涡流冷却推力室中涡流结构的分析与优化[J].推进技术, 2010, 31(2):165-169. TANG Fei, LI Jiawen, CHANG Keyu.Analysis and optimization of vortex-cooled combustion chamber[J].Journal of Propulsion Technology, 2010, 31(2):165-169.(in Chinese)
    [8] Fang D Q, Majdalani J, Chiaverini M J, et al.Simulation of the cold-wall swirl-driven combustion chamber[R].AIAA 2003-5055, 2003.
    [9] 孙得川, 杨建文, 白荣博.气氧/甲烷涡流冷壁燃烧室流场与壁面耦合传热分析[J].推进技术, 2011, 32(3):401-406. SUN Dechuan, YANG Jianwen, BAI Rongbo.Heat transfer analysis for a GOx/CH4 vortex cold-wall combustor[J].Journal of Propulsion Technology, 2011, 32(3):401-406.(in Chinese)
    [10] Fang D Q, Majdalani J, Chiaverini M J.Hot flow model of the vortex cold wall liquid rocket[R].AIAA 2004-3676, 2004.
    [11] 吴东波, 李家文, 常克宇.GH2/GO2涡流冷却推力室设计与数值计算[J].火箭推进, 2010, 36(5):17-22. WU Dongbo, LI Jiawen, CHANG Keyu.Design and numerical calculation of GH2/GO2 vortex-cooled combustion chamber[J].Journal of Rocket Propulsion, 2010, 36(5):17-22.(in Chinese)
    [12] Vyas A B, Majdalani J, Chiaverini M J.The bidirectional vortex:Part 1 an exact inviscid solution[R].AIAA 2003-5052, 2003.
    [13] Vyas A B, Majdalani J, Chiaverini M J.The bidirectional vortex:Part 2 viscous core corrections[R].AIAA 2003-5053, 2003.
    [14] Vyas A B, Majdalani J, Chiaverini M J.The bidirectional vortex:Part 3 multiple solutions[R].AIAA 2003-5054, 2003.
    [15] 李家文, 唐飞, 俞南嘉.推力室涡流冷却技术试验研究[J].推进技术, 2012, 33(6):956-960. LI Jiawen, TANG Fei, YU Nanjia.Experimental study on vortex-cooled thrust chamber[J].Journal of Propulsion Technology, 2012, 33(6):956-960.(in Chinese)
  • 加载中
计量
  • 文章访问数:  1538
  • HTML浏览量:  2
  • PDF量:  926
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-21
  • 刊出日期:  2014-02-28

目录

    /

    返回文章
    返回