留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超燃冲压发动机流量匹配机理

黄 兴 陈玉春 王晓东 李 洁 蔡元虎

黄 兴, 陈玉春, 王晓东, 李 洁, 蔡元虎. 超燃冲压发动机流量匹配机理[J]. 航空动力学报, 2014, 29(4): 852-857. doi: 10.13224/j.cnki.jasp.2014.04.015
引用本文: 黄 兴, 陈玉春, 王晓东, 李 洁, 蔡元虎. 超燃冲压发动机流量匹配机理[J]. 航空动力学报, 2014, 29(4): 852-857. doi: 10.13224/j.cnki.jasp.2014.04.015
HUANG Xing, CHEN Yu-chun, WANG Xiao-dong, LI Jie, CAI Yuan-hu. Mechanism of mass flow matching in scramjet[J]. Journal of Aerospace Power, 2014, 29(4): 852-857. doi: 10.13224/j.cnki.jasp.2014.04.015
Citation: HUANG Xing, CHEN Yu-chun, WANG Xiao-dong, LI Jie, CAI Yuan-hu. Mechanism of mass flow matching in scramjet[J]. Journal of Aerospace Power, 2014, 29(4): 852-857. doi: 10.13224/j.cnki.jasp.2014.04.015

超燃冲压发动机流量匹配机理

doi: 10.13224/j.cnki.jasp.2014.04.015
详细信息
    作者简介:

    黄 兴:黄兴(1983-),男,湖北荆州人,博士生,研究方向为发动机总体设计.

  • 中图分类号: V235.113

Mechanism of mass flow matching in scramjet

  • 摘要: 采用基于集总参数方程的燃烧室性能计算模型,辅以临界面积法,应用于隔离段和燃烧室的一维流场计算,实现了双模态超燃冲压发动机各种模态下的隔离段和燃烧室的流量匹配计算,并分析了流量匹配工作机理.结果表明:在未分离超燃模态与分离超燃模态下,增加燃烧室供油流量,隔离段和燃烧室流量匹配是通过流道中的喉道处马赫数降低来实现的;在跨燃模态与亚燃模态下,增加燃烧室供油流量,流量匹配主要是通过提高燃烧室流道中热力喉道处的总压来实现的.

     

  • [1] 陈玉春,刘小勇,黄兴.基于集总参数方程的超燃冲压发动机性能计算模型[J].推进技术,2012,33(6):840-846. CHEN Yuchun,LIU Xiaoyong,HUANG Xing.A model based on lumped parameter method for performance computation of scramjet[J].Journal of Propulsion Technology,2012,33(6):840-846.(in Chinese)
    [2] 黄兴,陈玉春,李洁,等.双模态超燃冲压发动机流量匹配的临界面积法[J].航空动力学报,2013,28(6):1305-1312. HUANG Xing,CHEN Yuchun,LI Jie,et al.Critical area method for mass flow match of dual-mode scramjet[J].Journal of Aerospace Power,2013,28(6):1305-1312.(in Chinese)
    [3] OBrien W F.One dimensional analysis program for scramjet and ramjet flowpaths .Virginia,US:Virginia Polytechnic Inatitute and State University,2010.
    [4] Smart M K,Stalker R.High speed propulsion:engine design-integration and thermal management .North Atlantic Treaty Organisation Report,EN-AVT-185,2010.
    [5] Segal C.The scramjet engine processes and characteristics[M].London:Cambridge University Press,2009.
    [6] Olds J R,Bradford J E.SCCREAM (simulated combined-cycle rocket engine analysis module):a conceptual RBCC engine design tool .AIAA 97-2760,1997.
    [7] Bradford J E,Olds J R.Improvements and enhancements to SCCREAM:a conceptual RBCC engine analysis tool .AIAA 98-3775,1998.
    [8] Bradford J E.A technique for rapid prediction of aft-body nozzle performance for hypersonic launch vehicle design .Georgia,US:Georgia Institute of Technology,2001.
    [9] Heiser W H,Pratt D T.Hypersonic airbreathing propulsion[M].Washington,US:AIAA Education,1994.
    [10] Billig F S,Sullins G A.Optimization of combustor-isolator in dual-mode scramjets .AIAA 93-515,1993.
    [11] Billig F S.Research on supersonic combustion[J].Journal of Propulsion and Power,1993,9(4):499-513.
    [12] Shapiro A H.The dynamics and thermodynamics of compressible fluid flow[M].New York:Ronald Press,1953.
    [13] Markell K C.Exergy methods for the generic analysis and optimization of hypersonic vehicle concepts .Virginia,US:Virginia Polytechnic Institute and State University,2005.
    [14] Corbin C R.Design and analysis of a Mach 3 dual mode scramjet combustor .AIAA-2008-2644,2008.
    [15] Biasca R J.Chemical kinetics of SCRAMJET propulsion .Massachusetts,US:Massachusetts Institute of Technology,1988.
    [16] Ren C H.A computer based model for the performance analysis of a SCRAMJET propulsion system .Massachusetts, US:Massachusetts Institute of Technology,1989.
  • 加载中
计量
  • 文章访问数:  1418
  • HTML浏览量:  1
  • PDF量:  806
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-30
  • 刊出日期:  2014-04-28

目录

    /

    返回文章
    返回