留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸附式压气机叶型和抽吸方案优化设计

李俊 刘波 杨小东 史磊

李俊, 刘波, 杨小东, 史磊. 吸附式压气机叶型和抽吸方案优化设计[J]. 航空动力学报, 2014, (8): 1871-1877. doi: 10.13224/j.cnki.jasp.2014.08.016
引用本文: 李俊, 刘波, 杨小东, 史磊. 吸附式压气机叶型和抽吸方案优化设计[J]. 航空动力学报, 2014, (8): 1871-1877. doi: 10.13224/j.cnki.jasp.2014.08.016
LI Jun, LIU Bo, YANG Xiao-dong, SHI Lei. Optimization design for aspirated compressor airfoil and aspiration plan[J]. Journal of Aerospace Power, 2014, (8): 1871-1877. doi: 10.13224/j.cnki.jasp.2014.08.016
Citation: LI Jun, LIU Bo, YANG Xiao-dong, SHI Lei. Optimization design for aspirated compressor airfoil and aspiration plan[J]. Journal of Aerospace Power, 2014, (8): 1871-1877. doi: 10.13224/j.cnki.jasp.2014.08.016

吸附式压气机叶型和抽吸方案优化设计

doi: 10.13224/j.cnki.jasp.2014.08.016
基金项目: 

国家自然科学基金重点资助项目(51236006)

详细信息
    作者简介:

    李俊(1989-),男,辽宁丹东人,博士生,研究方向为推进系统气动热力学及应用。

  • 中图分类号: V231.3

Optimization design for aspirated compressor airfoil and aspiration plan

  • 摘要: 将智能优化算法与准三维叶栅计算程序相结合,对某吸附式压气机叶型进行了优化设计,对优化设计前后的流场进行了详细分析.优化设计之后叶型总压损失下降40%,静压升提高0.6%.优化得到最佳抽吸位置位于分离区起始点上游,优化叶型具有更均匀的负荷分布,并且优化后叶型的性能在全攻角范围内均得到了提升.结果表明:更均匀的负荷分布会提高叶型的性能,减小叶型分离,降低抽吸所需要的能量.对于在尾缘处存在轻微分离的叶型其最优抽吸位置位于分离区上游.

     

  • [1] Godard A,Fourmaux A,Burguburu S,et al.Design method of a subsonic aspirated cascade[R].ASME Paper 2008-GT-50835,2008.
    [2] Liesner K,Meyer R,Lemke M,et al.On the efficiency of secondary flow suction in a compressor cascade[R].ASME Paper 2010-GT-22336,2010.
    [3] Gmelin C,Thiele F,Liesner K,et al.Investigations of secondary flow suction in a high speed compressor cascade[R].ASME Paper 2011-GT-46479,2011.
    [4] Wennerstrom A J.Highly loaded axial flow compressors:history and current developments[J].Journal of Turbomachinery,1990,112(10):567-578.
    [5] Godard A,Bario F,Burguburu S,et al.Experimental and numerical study of a subsonic aspirated cascade[R].ASME Paper 2012-GT-69011,2012.
    [6] Lord W K,MacMartin D G,Tillman T G.Flow control opportunities in gas turbine engines[R].AIAA-2000-2234,2000.
    [7] Song B,Gui X,Li S M,et al.Flow periodicity improvement in a high speed compressor cascade with a large turning-angle[R].AIAA-2002-3539,2002.
    [8] Song B,Ng W,Sonoda T,et al.Loss mechanisms of high-turning supercritical compressor cascades[J].Journal of Propulsion and Power,2008,24(3):416-423.
    [9] Catalano L A,Dadone A.Progressive optimization for the inverse design of 2D cascades[R].AIAA-2000-3204,2000.
    [10] Gallar L,Arias M,Pachidis V,et al.Compressor variable geometry schedule optimization using genetic algorithms[R].ASME Paper 2009-GT-60049,2009.
    [11] ZHENG Rongye,XIANG Jianhua,SUN Jinju.Blade geometry optimization for axial flow compressor[R].ASME Paper 2010-GT-22229,2010.
    [12] Patnaik S N,Coroneos R M,Hopkins D A,et al.A cascade optimization strategy for solution of difficult multi-disciplinary design problems[R].AIAA 96-1628,1996.
    [13] 宋彦萍,陈浮,赵桂杰,等.附面层吸除对大转角压气机叶栅气动性能影响的数值研究[J].航空动力学报,2005,20(4):561-566. SONG Yanping,CHEN Fu,ZHAO Guijie,et al.Numerical investigation of boundary layer suction in compressor cascade with large turning angles[J].Journal of Aerospace Power,2005,20(4):561-566.(in Chinese)
    [14] 陈绍文,郭爽,陆华伟,等.超高负荷吸附式压气机叶栅气动性能分析[J].热能动力工程,2009,24(2):167-171. CHEN Shaowen,GUO Shuang,LU Huawei,et al.Analysis of the aerodynamic performance of a super highly loaded adsorption type compressor cascade[J].Journal of Engineering for Thermal Energy and Power,2009,24(2):167-171.(in Chinese)
    [15] Schuler B J.Experimental investigation of an aspirated fan stage[D].Boston:Massachusetts Institute of Technology,2001.
    [16] Merchant A A.Design and analysis of axial aspirated compressor stage .Boston:Massachusetts Institute of Technology,1999.
    [17] Merchant A A.Aerodynamic design and performance of aspirated airfoils[J].Journal of Turbomachinery,2003,125(1):141-148.
    [18] Merchant A A,Kerrebrock J L,Adamczyk J J,et al.Experimental investigation of a high pressure ratio aspirated fan stage[J].Journal of Turbomachinery,2005,127(1):43-51.
    [19] Schuler B J,Kerrebrock J L,Merchant A A.Experimental investigation of a transonic aspirated compressor[J].Journal of Turbomachinery,2005,127(4):340-348.
    [20] 张华良,谭春青,张新敬,等.采用附面层抽吸(BLS)控制流动分离的数值模拟[J].推进技术,2009,30(2):192-196. ZHANG Hualiang,TAN Chunqing,ZHANG Xinjing,et al.Numerical investigation on application of boundary layer suction to control the flow separations[J].Journal of Propulsion Technology,2009,30(2):192-196.(in Chinese)
    [21] 兰发祥,黄国平.吸附式压气机平面叶栅数值模拟研究[J].燃气涡轮试验与研究,2009,22(4):1-8. LAN Faxiang,HUANG Guoping.Numerical simulation investigation of an aspirated compressor cascade[J].Gas Turbine Experiment and Research,2009,22(4):1-8.(in Chinese)
    [22] 刘波,南向谊,陈云永.附面层抽吸对转子激波结构和分离流动的影响[J].航空学报,2008,29(2):315-320. LIU Bo,NAN Xiangyi,CHEN Yunyong.Effects of BLS on the shock wave structure and separation flow of fan rotor[J].Acta Aeronautica et Astronautica Sinica,2008,29(2):315-320.(in Chinese)
    [23] Merchant A A,Drela M,Kerrebrock J L,et al.Aerodynamic design and analysis of a high pressure ratio[R].ASME Paper 2000-GT-619,2000.
    [24] Drela M.Two-dimensional transonic aerodynamic design and analysis using the Euler equations[D].Boston:Massachusetts Institute of Technology,1985.
    [25] 《航空发动机设计手册》总编委会.航空发动机设计手册: 第8册 压气机[M].北京:航空工业出版社,2000:126-127.
  • 加载中
计量
  • 文章访问数:  1345
  • HTML浏览量:  0
  • PDF量:  818
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-13
  • 刊出日期:  2014-08-28

目录

    /

    返回文章
    返回