留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低速三角翼纳秒脉冲等离子体激励实验

化为卓 李应红 牛中国 赵光银 梁华 韩孟虎

化为卓, 李应红, 牛中国, 赵光银, 梁华, 韩孟虎. 低速三角翼纳秒脉冲等离子体激励实验[J]. 航空动力学报, 2014, (10): 2331-2339. doi: 10.13224/j.cnki.jasp.2014.10.008
引用本文: 化为卓, 李应红, 牛中国, 赵光银, 梁华, 韩孟虎. 低速三角翼纳秒脉冲等离子体激励实验[J]. 航空动力学报, 2014, (10): 2331-2339. doi: 10.13224/j.cnki.jasp.2014.10.008
HUA Wei-zhuo, LI Ying-hong, NIU Zhong-guo, ZHAO Guang-yin, LIANG Hua, HAN Meng-hu. Experiment on low-speed delta wing using nanosecond pulse plasma actuation[J]. Journal of Aerospace Power, 2014, (10): 2331-2339. doi: 10.13224/j.cnki.jasp.2014.10.008
Citation: HUA Wei-zhuo, LI Ying-hong, NIU Zhong-guo, ZHAO Guang-yin, LIANG Hua, HAN Meng-hu. Experiment on low-speed delta wing using nanosecond pulse plasma actuation[J]. Journal of Aerospace Power, 2014, (10): 2331-2339. doi: 10.13224/j.cnki.jasp.2014.10.008

低速三角翼纳秒脉冲等离子体激励实验

doi: 10.13224/j.cnki.jasp.2014.10.008
基金项目: 

国家自然科学基金(51207169,51276197);陕西省自然科学基金(2011JQ7022)

详细信息
    作者简介:

    化为卓(1991- ),男,河南平顶山人,硕士生,主要从事等离子体流动控制研究.

  • 中图分类号: V211

Experiment on low-speed delta wing using nanosecond pulse plasma actuation

  • 摘要: 在30m/s来流速度下,进行了纳秒脉冲介质阻挡放电等离子体气动激励改善47°后掠角钝前缘三角翼气动特性的测力实验.为寻求优化的激励位置,实验研究了5种不同激励位置的流动控制效果.实验结果表明:激励位置对流动控制效果有决定性影响,位于三角翼前缘的等离子体气动激励能有效改善三角翼的气动特性,推迟失速,而上翼面不同展向位置的等离子体气动激励的流动控制效果十分微弱;激励频率是流动控制效果的重要影响因子,激励电压峰峰值为13kV时,激励频率为200Hz下的流动控制效果最好,在迎角30°时可使升力系数由1.31增大到1.44,增大9.6%,升阻比提高3.3%.

     

  • [1] Roupassov D V,Nikipelov A A,Nudnova M M,et al.Flow separation control by plasma actuator with nanosecond pulse periodic discharge[R].AIAA-2008-1367,2008.
    [2] 李应红,梁华,马清源,等.脉冲等离子体气动激励抑制翼型吸力面流动分离的实验研究[J].航空学报,2008,29(6):1429-1435. LI Yinghong,LIANG Hua,MA Qingyuan,et al.Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation[J].Acta Aeronautica et Astronautica Sinica,2008,29(6):1429-1435.(in Chinese)
    [3] 赵小虎,吴云,李应红,等.高负荷压气机叶栅分离结构及其等离子体流动控制[J].航空学报,2012,33(2):208-219. ZHAO Xiaohu,WU Yun,LI Yinghong,et al.Separation structure and plasma flow control on highly loaded compressor cascade[J].Acta Aeronautica et Astronautica Sinica,2012,33(2):208-219.(in Chinese)
    [4] Nishihara M,Takashima K,Rich J,et al.Mach 5 bow shock control by a nanosecond pulse surface DBD[R].AIAA-2011-1144,2011.
    [5] Kwak D Y,Nelson R C.Vortical flow control over delta wings with different sweep back angles using DBD plasma actuators[R].AIAA-2010-4837,2010.
    [6] 秦燕华,庄逢甘,沈礼敏,等.展向射流控制机翼前缘涡的机理及其应用[J].空气动力学学报,1998,16(3):267-275. QIN Yanhua,ZHUANG Fenggan,SHEN Limin,et al.An experimental study on controlling vortex over wing by using spanwise blowing[J].Acta Aerodynamica Sinica,1998,16(3):267-275.(in Chinese)
    [7] Visbal M R,Gaitonde D V.Control of vortical flows using simulated plasma actuators[R].AIAA-2006-505,2006.
    [8] Zhang P F,Wang J J,Feng L H,et al.Experimental study of plasma flow control on highly swept delta wing[J].AIAA Journal,2010,48(1):249-252.
    [9] Greenblatt D,Kastantin Y,Nayeri C N,et al.Delta-wing flow control using dielectric barrier discharge actuators[R].AIAA-2007-4277,2007.
    [10] 梁华,李应红,贾敏,等.等离子体气动激励的能量转化过程分析[J].高电压技术,2010,36(12):3054-3058. LIANG Hua,LI Yinghong,JIA Min,et al.Energy conversion process analysis of plasma aerodynamic actuation[J].High Voltage Engineering,2010,36(12):3054-3058.(in Chinese)
    [11] Glaz B,Dinavahi S P G,Gaitonde D V.Nanosecond pulsed plasma actuation effects on aerodynamic damping and implications for aeroelastic stability in the post-stall regime[R].AIAA-2012-1482,2012.
    [12] 李应红,吴云,梁华,等.提高抑制流动分离能力的等离子体冲击流动控制原理[J].科学通报,2010,55(31):3060-3068. LI Yinghong,WU Yun,LIANG Hua,et al.The mechanism of plasma shock flow control for enhancing flow separation control capability[J].Chinese Science Bulletin,2010,55(31):3060-3068.(in Chinese)
    [13] Gursul I,Wang Z,Vardaki E.Review of flow control mechanisms of leading-edge vortices[J].Progress in Aerospace Sciences,2007,43(7):246-270.
    [14] Lowson M V,Riley A J.Vortex breakdown control by delta wing geometry[J].Journal of Aircraft,1995,32(4):832-838.
    [15] 李凤蔚.空气与气体动力学引论[M].西安:西北工业大学出版社,2007:495-505.
    [16] Polhamus E C.Prediction of vortex lift characteristics by a leading-edge suction analogy[J].Journal of Aircraft,1971,8(4):193-199.
    [17] WANG Jinjun,XU Yan.Experimental studies on control of delta wing aerodynamics[R].AIAA-2004-252,2004.
    [18] 顾祥玉,杨永,李喜乐.马赫数和雷诺数对钝前缘三角翼流场的影响[J].航空计算技术,2012,42(6):13-16. GU Xiangyu,YANG Yong,LI Xile.Numerical simulation for effects of Mach and Reynolds number on flow over medium radius leading edge delta wing[J].Aeronautical Computing Technique,2012,42(6):13-16.(in Chinese)
  • 加载中
计量
  • 文章访问数:  1469
  • HTML浏览量:  5
  • PDF量:  975
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-09
  • 刊出日期:  2014-10-28

目录

    /

    返回文章
    返回