留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚/超声速楔状流层流边界层速度与温度相似解及拟合解

赵国昌 杜霞 宋丽萍 孔敬儒

赵国昌, 杜霞, 宋丽萍, 孔敬儒. 亚/超声速楔状流层流边界层速度与温度相似解及拟合解[J]. 航空动力学报, 2014, 29(12): 2785-2794. doi: 10.13224/j.cnki.jasp.2014.12.001
引用本文: 赵国昌, 杜霞, 宋丽萍, 孔敬儒. 亚/超声速楔状流层流边界层速度与温度相似解及拟合解[J]. 航空动力学报, 2014, 29(12): 2785-2794. doi: 10.13224/j.cnki.jasp.2014.12.001
ZHAO Guo-chang, DU Xia, SONG Li-ping, KONG Jing-ru. Similarity solutions and approximation solutions of velocity and temperature in laminar boundary layer of subsonic and supersonic wedge flows[J]. Journal of Aerospace Power, 2014, 29(12): 2785-2794. doi: 10.13224/j.cnki.jasp.2014.12.001
Citation: ZHAO Guo-chang, DU Xia, SONG Li-ping, KONG Jing-ru. Similarity solutions and approximation solutions of velocity and temperature in laminar boundary layer of subsonic and supersonic wedge flows[J]. Journal of Aerospace Power, 2014, 29(12): 2785-2794. doi: 10.13224/j.cnki.jasp.2014.12.001

亚/超声速楔状流层流边界层速度与温度相似解及拟合解

doi: 10.13224/j.cnki.jasp.2014.12.001
基金项目: 

辽宁省攀登学者基金(20132015)

航空科学基金(20131954004)

详细信息
    作者简介:

    赵国昌(1964-), 男, 北京人, 教授、博士生导师, 博士, 主要从事航空动力工程中的流动传热及热管理研究.

  • 中图分类号: V211.1+9

Similarity solutions and approximation solutions of velocity and temperature in laminar boundary layer of subsonic and supersonic wedge flows

  • 摘要: 利用相似变换获得了楔状流层流边界层无量纲流函数的3阶非线性常微分方程,用Runge-Kutta法求解微分方程获得了不同楔形角楔状流层流边界层无量纲速度随相似变量的变化曲线;推导了亚声速和超声速楔状流层流边界层无量纲温度关于相似变量的2阶线性齐次和非齐次微分方程,获得了温度分布的通解,恒壁温条件下亚声速楔状流和绝热壁面条件下超声速楔状流层流边界层无量纲温度解析解及指数函数形式的拟合解.以楔形角为0为例利用相似变换研究了超声速条件下气体压缩性及黏度随温度变化等因素对层流边界层速度与温度的影响,得出不可压缩常物性与可压缩变物性条件下无量纲速度相对误差绝对值小于9.8%的结论.研究表明:Pr越大贴近壁面处无量纲温度变化越剧烈;超声速条件下壁温低于绝热壁温时黏性耗散作用可以使层流边界层气体温度从壁面到主流间出现先升高后降低的变化.

     

  • [1] 赵以强,刘世英,邓立君.高超声速楔形体前缘优化[J].内燃机与动力装置,2013,30(2):36-39. ZHAO Yiqiang,LIU Shiying,DENG Lijun.Optimization of power law leading edges in hypersonic flow[J].Internal Combustion Engine and Power Plant, 2013,30(2):36-39.(in Chinese)
    [2] 杨鹏飞,方洋旺,黄春蓉,等.高超声速楔形模型飞行流场数值模拟[J].飞行力学,2013,31(2):113-117. YANG Pengfei,FANG Yangwang,HUANG Chunrong,et al.Numerical simulation of hypersonic flow fields around wedge model[J].Flight Dynamics, 2013, 31(2):113-117.(in Chinese)
    [3] Santos F N W,Lewis J M.Aerodynamic heating performance of power law leading edges in rarefied hypersonic flow[C]//Proceedings of 36th AIAA Thermophysics Conference.Orlando,US:AIAA,2003:1-11.
    [4] Lovett A J,Brogan P T,Philippona S D,et al.Development needs for advanced afterburner designs[R].Fort Lauderdale,US:40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2004.
    [5] 王燕,郝英立.机翼表面结冰数值模拟[J].东南大学学报:自然科学版,2009,139(5):956-960. WANG Yan,HAO Yingli.Numerical simulation of ice accretion on airfoil[J].Journal of Southeast University:Natural Science Edition,2009,139(5):956-960.(in Chinese)
    [6] Dufour E,Bouchez M.Computational analysis of a kero-sene-fueled scramjet[R].Kyoto,Japan:AIAA/NAL-NASDA-ISAS 10th International Space Planes and Hyper-sonic Systems and Technologies Conference,2001.
    [7] Kodera M,Sunami T,Nakahashi K,et al.Numerical study of mixing and combustion process of a scramjet engine model[R].Kyoto,Japan:AIAA/NAL-NASDA-ISAS 10th In-ternational Space Planes and Hypersonic Systems and Technologies Conference,2001.
    [8] 孙冰,郑力铭.超燃冲压发动机支板热环境及热防护方案[J].航空动力学报,2006,21(2):336-341. SUN Bing,ZHENG Liming.Research of scramjet strut thermal environment and thermal protection scheme[J].Journal of Aerospace Power,2006,21(2):336-341.(in Chinese)
    [9] 宋冈霖,田亮,冮强,等.超燃冲压发动机支板热性能研究[J].推进技术,2006,21(2):809-816. SONG Ganglin,TIAN Liang,JIANG Qiang,et al.A study for scramjet strut thermal performance[J].Journal of Propulsion Technology,2006,21(2):809-816.(in Chinese)
    [10] 杨强生,蒲保荣.高等传热学[M].上海:上海交通大学出版社,1996.
    [11] 凯斯·W M,克拉福特·M E.对流传热与传质[M].陈熙,翟殿春,译.北京:科学出版社,1986.
    [12] Goldstein R J,Howarth L.Modern development in fluid dynamics:high speed flow[M].Qxford:Clarendon Press,1953.
    [13] 孙雁,钟万勰.二维边界层方程的迭代求解[J].计算力学学报,2010,27(3):385-390. SUN Yan,ZHONG Wanxie.Iterative solution for two-dimensional boundary layer equations[J].Chinese Journal of Computational Mechanics,2010,27(3):385-390.(in Chinese)
    [14] 郑连存,温安国,张欣欣.Falkner-Skan方程的近似解析解[J].计算力学学报,2008,25(4):506-510. ZHENG Liancun,WEN Anguo,ZHANG Xinxin.Approximate analytical solution for Falkner-Skan equation[J].Chinese Journal of Computational Mechanics,2008,25 (4):506-510.(in Chinese)
    [15] 施梨,张世杰,叶松.大椭圆星载轨道预报系统设计[J].航天控制,2010,28(6):43-48. SHI Li,ZHANG Shijie,YE Song.The onboard orbit propagation system design of large elliptical orbit[J].Aerospace Control,2010,28(6):43-48.(in Chinese)
    [16] Eckert E R G,Drake R M Jr.Analysis of heat and mass transfer[M].New York:McGraw Hill,1972.
    [17] 章梓雄,董曾南.黏性流体力学[M].北京:清华大学出版社,2011.
    [18] 张靖周.高等传热学[M].北京:科学出版社,2009.
    [19] 杨强生.对流传热与传质[M].北京:高等教育出版社,1985.
    [20] 王补宣.工程传热传质学[M].北京:科学出版社,1998.
    [21] Toro P G P,Rusak Z,Nagamatsu H T,et al.Self-similar compressible laminar boundary layers[R].AIAA 97-0767,1997.
    [22] 何霖.超声速边界层及激波与边界层相互作用的实验研究[D].长沙:国防科学技术大学,2011. HE Lin.Experimental investigation of supersonic boundary layer and shock wave/boundary layer interaction[D].Changsha:National University of Defense Technology,2011.(in Chinese)
  • 加载中
计量
  • 文章访问数:  1610
  • HTML浏览量:  3
  • PDF量:  1441
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-25
  • 刊出日期:  2014-12-28

目录

    /

    返回文章
    返回