留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型扑翼飞行器扑翼/尾翼气动干扰的数值研究

王掩刚 陈为雄 邓双厚 赵旭民

王掩刚, 陈为雄, 邓双厚, 赵旭民. 微型扑翼飞行器扑翼/尾翼气动干扰的数值研究[J]. 航空动力学报, 2015, 30(2): 257-264. doi: 10.13224/j.cnki.jasp.2015.02.001
引用本文: 王掩刚, 陈为雄, 邓双厚, 赵旭民. 微型扑翼飞行器扑翼/尾翼气动干扰的数值研究[J]. 航空动力学报, 2015, 30(2): 257-264. doi: 10.13224/j.cnki.jasp.2015.02.001
WANG Yan-gang, CHEN Wei-xiong, DENG Shuang-hou, ZHAO Xu-min. Numerical study of flapping wing/tail aerodynamic interaction for flapping wing micro air vehicle[J]. Journal of Aerospace Power, 2015, 30(2): 257-264. doi: 10.13224/j.cnki.jasp.2015.02.001
Citation: WANG Yan-gang, CHEN Wei-xiong, DENG Shuang-hou, ZHAO Xu-min. Numerical study of flapping wing/tail aerodynamic interaction for flapping wing micro air vehicle[J]. Journal of Aerospace Power, 2015, 30(2): 257-264. doi: 10.13224/j.cnki.jasp.2015.02.001

微型扑翼飞行器扑翼/尾翼气动干扰的数值研究

doi: 10.13224/j.cnki.jasp.2015.02.001
基金项目: 

国家自然科学基金(51376150)

详细信息
    作者简介:

    王掩刚(1976-),男,陕西武功人,教授、博士生导师,博士,主要从事叶轮机械气动热力学及新型推力装置研究.

  • 中图分类号: V211

Numerical study of flapping wing/tail aerodynamic interaction for flapping wing micro air vehicle

  • 摘要: 以二维刚性约束条件下的微型扑翼飞行器模型为研究对象,在动网格技术基础上,应用非定常数值分析手段对比分析了单翼/纵列翼布局的气动性能,深入研究了纵列翼缩减频率、扑翼—尾翼无量纲水平间距、来流攻角对其气动性能的影响.结果表明:①纵列翼尾翼对扑翼产生正效应干扰,相对于单翼布局,扑翼—尾翼无量纲水平间距为0.5倍翼型弦长时的纵列翼布局的推力系数和推进效率分别增加28.7%和5.7%;②缩减频率是影响推力的关键参数,随着缩减频率的增加,脱落涡的强度增加,推力系数增大.对于单翼、纵列翼两种布局模式,当缩减频率在1.0附近时推进效率达到最优;③对于纵列翼布局,在扑翼—尾翼无量纲水平间距为1.1倍翼型弦长时推进效率达到峰值;④在0°~20°来流攻角变化范围内,随着来流攻角的增加,升力系数增加,推力系数减小,当来流攻角大于9°时,两种布局的推力均为负值.

     

  • [1] James M M,Michael S F.Micro air vehicles:toward a new dimension in flight[R].Arlington Country,Virginia:the Defense Advanced Research Projects Agency Tactical Technology Office,1997.
    [2] 崔尔杰.生物运动仿生力学与智能微型飞行器[J].力学与实践,2004,26(2):1-8. CUI Erjie.Biological motion bionic mechanics and smart MAV[J].Mechanics and Practice,2004,26(2):1-8.(in Chinese)
    [3] Pennycuick C J.Bird flight performance:a practical calculation manual[M].New York:Oxford University Press,1989.
    [4] Tennenes H.The simple science of flight:from insects to jumbo jets[M].Boston,MA:Massachusetts Insititute of Technology Press,1999.
    [5] Hall K C,Hall S R.Minimum induced power requirements for flapping flight[J].Fluid Mechanics,1996,323:285-315.
    [6] Ansari S A,Knowles K,Zbikowski R.Insectlike flapping wings in the hover:Part 1 effect of wing kinematics[J].Journal of Aircraft,45(6):1945-1954.
    [7] Groen M.PIV measurements on the flapping wing MAV DelFly Ⅱ:an aerodynamic and aeroelastic investigation into vortex development[D].Delft,Netherlands:Delft University of Technology,2010.
    [8] 鲍锋,杨琪,何意.单自由度扑翼模型脱落涡及其升力机制的实验研究[J].航空动力学报,2014,29(5):1091-1098. BAO Feng,YANG Qi,HE Yi.Experimental investigation on the shedding vortex and lifting mechanism for a single-DOF flapping wing model[J].Journal of Aerospace Power,2014,29(5):1091-1098.(in Chinese)
    [9] Lehmann F O,Pick S.The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings[J].Journal of Experimental Biology,2007,210(8):1362-1377.
    [10] Tuncer I H,Walz R,Platzer M F.A computational study on the dynamic stall of a flapping airfoil[R].AIAA 98-2519,1998.
    [11] Tuncer I H,Lai J C S,Platzer M F.A computational study of flow reattachment over a stationary/flapping airfoil combination in tandem[R].AIAA 98-0109,1998.
    [12] Tuncer I H,Platzer M F.A computational study of flow separation characteristics and wake profiles behind a flapping airfoil[R].AIAA 99-0648,1999.
    [13] 张亚峰,宋笔锋,袁昌盛,等.微型扑翼飞行器推力特性试验[J].航空动力学报,2007,22(12):2078-2082. ZHANG Yafeng,SONG Bifeng,YUAN Changsheng,et al. Experimental investigation of propulsion characteristic of flapping-wing MAV[J].Journal of Aerospace Power,2007,22(12):2078-2082.(in Chinese)
    [14] 张兴伟,周超英,谢鹏.扑翼柔性变形对悬停气动特性影响的数值研究[J].哈尔滨工业大学学报,2012,44(1):115-119. ZHANG Xingwei,ZHOU Chaoying,XIE Peng.Numerical research of effect of hovering aerodynamic characteristics on deformation of flapping wing[J].Journal of Harbin Institute of Technology,2012,44(1):115-119.(in Chinese)
    [15] Kaya M,Tuncer I H,Jones K D,et al.Optimization of aeroelastic flapping motion of thin airfoils in a biplane configuration for maximum thrust[R].AIAA 2007-4340,2007.
    [16] Kaya M,Tuncer I H,Jones K D,et al.Optimization of flapping motion of airfoils in biplane configuration for maximum thrust and/or efficiency[R].AIAA 2007-484,2007.
    [17] Kaya M,Tuncer I H,Jones K D,et al.Optimization of flapping motion parameters for two airfoils in a biplane configuration[J].Journal of Aircraft,2009,46(2):583-592.
    [18] Wang Z J,Birch J M,Dickinson M H.Unsteady forces and flows in low Reynolds number hovering flight:two-dimensional computations vs robotic wing experiments[J].Journal of Experimental Biology,2004,207(3):449-460.
    [19] 张晓庆,王志东,张振山.二维摆动翼仿生推进水动力性能研究[J].水动力学研究与进展,2006,21(5):632-639. ZHANG Xiaoqing,WANG Zhidong,ZHANG Zhenshan. Hydrodynamic study of bionic propulsion for 2-D flapping foil[J].Journal of Hydrodynamics,2006,21(5):632-639.(in Chinese)
    [20] Tuncer I H,Kaya M.Thrust generation caused by flapping airfoils in a biplane configuration[J].Journal of Aircraft,2003,40(3):509-515.
  • 加载中
计量
  • 文章访问数:  1819
  • HTML浏览量:  4
  • PDF量:  1256
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-16
  • 刊出日期:  2015-02-28

目录

    /

    返回文章
    返回