留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转通道入口湍流度控制方法及验证

吴学旺 孙纪宁 张传杰 金钊

吴学旺, 孙纪宁, 张传杰, 金钊. 旋转通道入口湍流度控制方法及验证[J]. 航空动力学报, 2015, 30(2): 384-391. doi: 10.13224/j.cnki.jasp.2015.02.017
引用本文: 吴学旺, 孙纪宁, 张传杰, 金钊. 旋转通道入口湍流度控制方法及验证[J]. 航空动力学报, 2015, 30(2): 384-391. doi: 10.13224/j.cnki.jasp.2015.02.017
WU Xue-wang, SUN Ji-ning, ZHANG Chuan-jie, JIN Zhao. Control method of inlet turbulent intensity in rotating channel and validation[J]. Journal of Aerospace Power, 2015, 30(2): 384-391. doi: 10.13224/j.cnki.jasp.2015.02.017
Citation: WU Xue-wang, SUN Ji-ning, ZHANG Chuan-jie, JIN Zhao. Control method of inlet turbulent intensity in rotating channel and validation[J]. Journal of Aerospace Power, 2015, 30(2): 384-391. doi: 10.13224/j.cnki.jasp.2015.02.017

旋转通道入口湍流度控制方法及验证

doi: 10.13224/j.cnki.jasp.2015.02.017
详细信息
    作者简介:

    吴学旺(1989-),男,湖南湘潭人,硕士,主要从事旋转换热与流动研究.

  • 中图分类号: V235.1

Control method of inlet turbulent intensity in rotating channel and validation

  • 摘要: 针对旋转通道实验,为了获得理想的旋转通道入口湍流度,更好地模拟实际涡轮叶片内冷通道的流动换热,提出了一种入口湍流度控制方法,并通过实验对该方法进行了验证和初步探索.实验中,在边长为40mm×40mm的方形通道中,放置了一层网丝直径d=3mm,网丝间距Mu=12mm的阻尼网,利用热线风速仪,得到了雷诺数为2200~3900范围内的阻尼网后下游湍流特性.研究发现:流体通过该阻尼网后,湍流度显著增大并沿流向逐渐衰减,相同点湍流度随阻尼网雷诺数增大而增大,气流在阻尼网后较短距离内就获得了5%的湍流度,这与实际涡轮叶片内冷通道流动湍流度相当;阻尼网雷诺数越小,流动越早进入横向均匀及各向同性湍流;通过经典公式对阻尼网后通道中心湍流度沿流向分布进行拟合,实验数据与曲线拟合较好.

     

  • [1] 刘传凯,陶智,丁水汀,等.旋转光滑及带肋U形通道的局部换热特性[J].航空学报,2006,27(5):751-755. LIU Chuankai,TAO Zhi,DING Shuiting,et al.Local heat transfer in a rotating smooth and fibbed U-shaped channels[J].Acta Aeronautica et Astronautica Sinica,2006,27(5):751-755.(in Chinese)
    [2] Han J C.Turbine blade cooling studies at Texas A&M University:1980-2004[J].Journal of Thermophysics and Heat Transfer,2006,20(2):161-187.
    [3] Comte-Bellot G,Corrsin S. The use of a contraction to improve the isotropy of grid-generated turbulence[J].Journal of Fluid Mechanics,1966,25(4):657-682.
    [4] Van Atta C W,Chen W Y.Measurements of spectral energy transfer in grid turbulence[J].Journal of Fluid Mechanics,1969,38(4):743-768.
    [5] Sreenivasan K R,Tavoularis S,Corrsin S.Temperature fluctuation and scales in grid-generated turbulence[J].Journal of Fluid Mechanics,1980,100(3):587-621.
    [6] Sirivat A,Warhaft Z.The effect of a passive cross-stream temperature gradient on the evolution of temperature variance and heat flux in grid turbulence[J].Journal of Fluid Mechanics,1983,128:323-346.
    [7] Kang H S,Chester S,Meneveau C.Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation[J].Journal of Fluid Mechanics,2003,480:129-160.
    [8] Laws E M,Livesey J L.Flow through screens[J].Annual Review of Fluid Mechanics,2003,10:247-266.
    [9] Hurst D,Vassilicos J C.Scalings and decay of fractal-generated turbulence[J]. Physics of Fluids,2007,19:035103.1-035103.7.
    [10] King L V.On the convection of heat from small cylinders in a stream of fluid:determination of the convection constants of small platinum wires,with applications to how-wire anemometry[J].Proceedings of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences,1914,90:563-570.
    [11] Mohamed M S,Larue J C.The decay power law in grid-generated turbulence[J].Journal of Fluid Mechanics,1990,219:195-214.
    [12] Kármán T,Howarth L.On the statistical theory of isotropic turbulence[J].Proceedings of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences,1938,164:192-215.
    [13] Kolmogorov A N.Dissipation of energy in the locally isotropic turbulence[J].Proceedings of the Royal Society of London Series A:Mathematical and Physical Sciences,1941,31:538-540.(in Russian)
    [14] Saffman P G.The large-scale structure of homogeneous turbulence[J].Journal of Fluid Mechanics,1967,27(3):581-593.
    [15] George W K.The decay of homogeneous turbulence[M].New York:Hemisphere,1988.
  • 加载中
计量
  • 文章访问数:  1051
  • HTML浏览量:  5
  • PDF量:  833
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-17
  • 刊出日期:  2015-02-28

目录

    /

    返回文章
    返回