留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长期在轨贮存低温推进剂过冷度获取方案研究

王磊 厉彦忠 马原 徐孟健

王磊, 厉彦忠, 马原, 徐孟健. 长期在轨贮存低温推进剂过冷度获取方案研究[J]. 航空动力学报, 2015, 30(11): 2794-2802. doi: 10.13224/j.cnki.jasp.2015.11.030
引用本文: 王磊, 厉彦忠, 马原, 徐孟健. 长期在轨贮存低温推进剂过冷度获取方案研究[J]. 航空动力学报, 2015, 30(11): 2794-2802. doi: 10.13224/j.cnki.jasp.2015.11.030
WANG Lei, LI Yan-zhong, MA Yuan, XU Meng-jian. Investigation on acquisition schemes of cryogenic propellant subcooling for long-term on-orbit storage[J]. Journal of Aerospace Power, 2015, 30(11): 2794-2802. doi: 10.13224/j.cnki.jasp.2015.11.030
Citation: WANG Lei, LI Yan-zhong, MA Yuan, XU Meng-jian. Investigation on acquisition schemes of cryogenic propellant subcooling for long-term on-orbit storage[J]. Journal of Aerospace Power, 2015, 30(11): 2794-2802. doi: 10.13224/j.cnki.jasp.2015.11.030

长期在轨贮存低温推进剂过冷度获取方案研究

doi: 10.13224/j.cnki.jasp.2015.11.030
基金项目: 

国家自然科学基金(51406142)

航天低温推进剂技术国家重点实验室开放课题(SKLTSCP1311)

详细信息
    作者简介:

    王磊(1985-),男,陕西西安人,讲师,博士后,主要从事低温推进剂热分层与压力管理.

  • 中图分类号: V511+.6

Investigation on acquisition schemes of cryogenic propellant subcooling for long-term on-orbit storage

  • 摘要: 增大低温推进剂入轨时的过冷度可显著延长低温燃料在轨贮存期限.通过文献调研与理论分析,介绍了4种低温推进剂过冷度获取方案的工作过程与研究现状,分析了不同方案的优缺点,在此基础上提出了我国开展相关研究的思路.研究表明:①为了减小过冷度获取成本,应采用先加注后冷却的操作程序,且制冷系统尽可能靠近目标贮箱;②液氧、液态甲烷可通过液氮池沸腾提供过冷度;③氦气喷射预冷消耗氦气量巨大,建议仅针对小型液氢采用此技术;④热力学低温流体过冷器(TCS)技术具有总体质量轻、投入能量少等优点,在液氢过冷度获取方面具有可观的应用前景.可为我国开展低温推进剂过冷度相关研究提供参考.

     

  • [1] Mustafi S,Canavan E,Johnson W,et al.Subcooling cryogenic propellants for long duration space exploration[R].AIAA-2009-6584,2000.
    [2] Martin J J,Smith J W.Cryogenic testing of a foam-multilayer insulation concept in a simulated orbit hold environment[R].AIAA-1993-1803,1993.
    [3] Hastings L J,Hedayat A,Brown T M.Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage[R].NASA/TM 2004-213175,2004.
    [4] Plachta D W,Christie R J,Jurns J M,et al.Passive ZBO storage of liquid hydrogen and liquid oxygen applied to space science mission concepts[J].Cryogenics,2006,46(2/3):89-97.
    [5] Lebar J F,Cady E C.The advanced cryogenic evolved stage (ACES):a low-cost,low-risk approach to space exploration launch[R].AIAA-2006-7454,2006.
    [6] Guernsey C S,Baker R S,Plachta D.Cryogenic propulsion with zero boil-off storage applied to outer planetary exploration[R].AIAA-2005-3559,2005.
    [7] Plachta D.Hybrid thermal control testing of a cryogenic propellant tank[R].NASA/TM 1999-209389,1999.
    [8] Hastings L J,Tucker S P.Marshall space flight center in-space cryogenic fluid management program overview[R].AIAA-2005-3561,2005.
    [9] Ho S H,Rahman M M.Nozzle injection displacement mixing in a zero boil-off hydrogen storage tank[J].International Journal of Hydrogen Energy,2008,33(2):878-888.
    [10] Ho S H,Rahman M M.Three-dimensional analysis for liquid hydrogen in a cryogenic storage tank with heat pipe-pump system[J].Cryogenics,2008,48(1/2):31-41.
    [11] Panzarella C H,Mohammad K.Self-pressurization of large spherical cryogenic tanks in space[J].Journal of Spacecraft and Rockets,2005,42(2):299-308.
    [12] Panzarella C H,Plachta D,Kassemi M.Pressure control of large cryogenic tanks in microgravity[J].Cryogenics,2004,44(6/7/8):475-483.
    [13] Hastings L J,Flachbart R H,Martin J J,et al.Spray bar zero-gravity vent system for on-orbit liquid hydrogen storage[R].NASA/TM 2003-212926,2003.
    [14] 中华人民共和国国务院新闻办公室.2011年中国的航天(白皮书)[J].航天器工程,2012,21(1):1-6.
    [15] 冶文莲,王田刚,王小军,等.应用于低温贮箱的变密度多层绝热传热分析[J].低温与超导,2012,40(12):5-8. YE Wenlian,WANG Tiangang,WANG Xiaojun,et al.Heat transfer analysis of variable density multi-layer insulation for cryogenic storage tank[J].Cryogenics & Superconductivity,2012,40(12):5-8.(in Chinese)
    [16] 张安,闫春杰,陈联,等.基于Lockheed模型的变密度多层 绝热理论分析与实验[J].真空与低温,2013,19(2):90-94. ZHANG An,YAN Chunjie,CHEN Lian,et al.Computational analysis of variable density multilayer insulation based on the Lockheed model[J].Vacuum & Cryogenics,2013,19(2):90-94.(in Chinese)
    [17] 张安,闫春杰,霍英杰,等.变密度多层绝热性能测试装置及实验验证[J].低温与超导,2013,41(8):10-13. ZHANG An,YAN Chunjie,HUO Yingjie,et al.An experimental setup and verification for performance testing of variable density multilayer insulation[J].Cryogenics & Superconductivity,2013,41(8):10-13.(in Chinese)
    [18] 冶文莲,王丽红,王田刚,等.带搅拌器的 ZBO低温贮箱三维模拟[J].低温工程,2013(6):5-9. YE Wenlian,WANG Lihong,WANG Tiangang,et al.Three-dimensional analysis of zero boil-off cryogenic storage tank used mixer[J].Cryogenics,2013(6):5-9.(in Chinese)
    [19] 胡伟峰,申麟,杨建民,等.低温推进剂长时间在轨的蒸发量控制技术进展[J].导弹与航天运载技术,2009(6):28-34. HU Weifeng,SHEN Lin,YANG Jianmin,et al.Progress of study on transpiration control technology for orbit long-term applied cryogenic propellant[J].Missiles and Space Vehicles,2009(6):28-34.(in Chinese)
    [20] 冶文莲,王小军,王丽红,等.微重力下低温贮箱压力控制技术进展[J].低温与超导,2012,40(6):8-12. YE Wenlian,WANG Xiaojun,WANG Lihong,et al.Progress of pressure control technology of cryogenic storage tanks in microgravity[J].Cryogenics & Superconductivity,2012,40(6):8-12.(in Chinese)
    [21] 刘展,厉彦忠,王磊,等.低温推进剂长期在轨压力管理技术研究进展[J].宇航学报,2014,35(3):254-261. LIU Zhan,LI Yanzhong,WANG Lei,et al.Progress of study on long-term in-orbit pressure management technique for cryogenic propellant[J].Journal of Astronautics,2014,35(3):254-261.(in Chinese)
    [22] Mustafi S,Canavan E,Johnson W,et al.Subcooling cryogenic propellants for long duration space exploration[R].AIAA-2009-6584,2009.
    [23] Tomsik T M.Recent advances and applications in cryogenic propellant densification technology[R].NASA/TM 2000-209941,2000.
    [24] Johnson W L,Tomsik T M,Smudde T D,et al.A densified liquid methane delivery system for the Altair ascent stage[R].AIAA-2010-1904,2010.
    [25] Moran M E,Ohio B,Haberbusch M,et al.Densified propellant technology:fueling aerospace vehicles in the new era[R].AIAA-1997-2824,1997.
    [26] Lak T,Lozano M,Tomsik T.Advancement in cryogenic propulsion system performance through propellant densification[R].AIAA-1996-3123,1996.
    [27] Greene W D,Boxx D L.Propellant densification for shuttle:the SSME perspective[R].AIAA-2002-3602,2000.
    [28] Mustafi S,Johnson W,Kashani A,et al.Subcooling for long duration in-space cryogenic propellant storage[R].AIAA-2010-8869,2010.
    [29] Nguyen K,Knowles T E,Greene W D,et al.Propellant densification for launch vehicles:simulation and testing[R].AIAA-2002-4293,2002.
    [30] Flachbart R H,Hastings L J,Hedayat A,et al.Testing of spray-bar thermodynamic vent system in liquid nitrogen[J].AIP Conference Proceedings,2006,823(1):240-247.
    [31] Flachbart R H,Hastings L J,Hedayat A,et al.Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J].Cryogenics,2008,48(5/6):217-222.
    [32] Mustafi S,Hohnson W,Kashani A,et al.Subcooling for long duration in-space cryogenic propellant storage[R].AIAA-2010-8869,2010.
    [33] Cho N,Kwon O,Kim Y,et al.Investigation of helium injection cooling to liquid oxygen under pressurized condition[J].Cryogenics,2006,46(11):778-793.
    [34] Cho N,Kwon O,Kim Y,et al.Investigation of helium injection cooling to liquid oxygen propellant chamber[J].Cryogenics,2006,46(2/3):132-142.
    [35] Ramesh T,Thyagarajan K.Investigation studies on sub-cooling of cryogenic liquid using helium injection method[J].American Journal of Applied Sciences,2014,11(5):707-716.
  • 加载中
计量
  • 文章访问数:  1037
  • HTML浏览量:  3
  • PDF量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-16
  • 刊出日期:  2015-11-28

目录

    /

    返回文章
    返回