留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空低雷诺数吸附式压气机叶型耦合优化设计

李俊 刘波 杨小东 陆晓峰

李俊, 刘波, 杨小东, 陆晓峰. 高空低雷诺数吸附式压气机叶型耦合优化设计[J]. 航空动力学报, 2016, 31(2): 503-512. doi: 10.13224/j.cnki.jasp.2016.02.031
引用本文: 李俊, 刘波, 杨小东, 陆晓峰. 高空低雷诺数吸附式压气机叶型耦合优化设计[J]. 航空动力学报, 2016, 31(2): 503-512. doi: 10.13224/j.cnki.jasp.2016.02.031
LI Jun, LIU Bo, YANG Xiao-dong, LU Xiao-feng. Coupling optimization design for aspirated compressor airfoil with low Reynolds number in high altitude[J]. Journal of Aerospace Power, 2016, 31(2): 503-512. doi: 10.13224/j.cnki.jasp.2016.02.031
Citation: LI Jun, LIU Bo, YANG Xiao-dong, LU Xiao-feng. Coupling optimization design for aspirated compressor airfoil with low Reynolds number in high altitude[J]. Journal of Aerospace Power, 2016, 31(2): 503-512. doi: 10.13224/j.cnki.jasp.2016.02.031

高空低雷诺数吸附式压气机叶型耦合优化设计

doi: 10.13224/j.cnki.jasp.2016.02.031
基金项目: 

先进航空发动机协同创新中心项目

国家自然科学基金重点(51236006)

详细信息
    作者简介:

    李俊(1989-),男,辽宁丹东人,博士生,研究方向为压气机叶型优化设计. E-mail: lijun7manunited@163.com

  • 中图分类号: V231.3

Coupling optimization design for aspirated compressor airfoil with low Reynolds number in high altitude

  • 摘要: 为了探究高空低雷诺数条件下吸附式叶型的气动设计特性,利用人工蜂群算法对低雷诺数吸附式叶型进行优化设计,该设计方法可以将叶型和抽吸方案进行耦合优化.并且对高空低雷诺数吸附式叶型耦合优化设计的必要性进行了论证.研究结果表明:在地面条件下设计的具有较好性能的吸附式叶型,在高空低雷诺数条件下,性能有可能会显著下降,针对高空低雷诺数条件的吸附式叶型设计有很大必要性;针对研究对象,在高空低雷诺数条件下优化设计后总压损失降低了32%,静压升提高了0.01,并且优化设计后在地面条件下的性能也略有提升;在高空低雷诺数条件下,适当地增加吸附式叶型前段的负荷,通过抽吸来控制层流分离泡的设计效果最为理想;优化后得到的最佳抽吸位置位于层流分离泡中心区域.

     

  • [1] Wahidi R,Bridges D H.Effects of distributed suction on an airfoil at low Reynolds number[J].AIAA Journal,2012,50(3):523-539.
    [2] Roberts W B.Axial compressor blade optimization in the low Reynolds number regime[J].AIAA Journal,1979,17(12):1361-1367.
    [3] Villegas A,Diez J F,Tillman T G.Instantaneous aerodynamic load calculations in rotating airfoils from time resolved PIV measurement at low Reynolds number[R].ASME Paper IMECE2013-65850,2013.
    [4] 赵胜丰,卢新根,朱俊强.雷诺数对跨声速压气机转子内部流动失稳触发机理的影响[J].推进技术,2013,34(1):25-30. ZHAO Shengfeng,LU Xingen,ZHU Junqiang.Effects of Reynolds number on the instability inception mechanism of a transonic compressor[J].Journal of Propulsion Technology,2013,34(1):25-30.(in Chinese)
    [5] Merchant A.Aerodynamic design and performance of aspirated airfoils[J].Journal of Turbomachinery,2003,125(1):141-148.
    [6] Godard A,Fourmaux A,Burguburu S,et al.Design method of a subsonic aspirated cascade[R].ASME Paper GT2008-50835,2008.
    [7] 王如根,周敏,夏钦斌.附面层抽吸对低雷诺数下压气机稳定性的影响[J].燃气涡轮试验与研究,2010,23(2):1-4. WANG Rugen,ZHOU Min,XIA Qinbin.Boundary suction effect on compressor instability at low Reynolds number[J].Gas Turbine Experiment and Research,2010,23(2):1-4.(in Chinese)
    [8] 夏钦斌,王如根,周敏.低雷诺数下跨声速转子流动失稳及附面层抽吸扩稳研究[J].航空动力学报,2009,24(7):1610-1615. XIA Qinbin,WANG Rugen,ZHOU Min.Research on flow instability of transonic compressor rotor and boundary suction effect at low Reynolds number[J].Journal of Aerospace Power,2009,24(7):1610-1615.(in Chinese)
    [9] 陈灿平.层流动能转捩模型数值改进方法研究[D].北京:中国科学院大学,2013. CHEN Canping.Investigation on a improved laminar kinetic energy transition model[D].Beijing:University of Chinese Academy of Sciences,2013.(in Chinese)
    [10] Karaboga D.An idea based on honey bee swarm for numerical optimization[M].Kayseri:Erciyes University,2005.
    [11] Karaboga D,Basturk B.On the performance of artificial bee colony (ABC) algorithm[J].Applied Soft Computing,2008,8(1):687-697.
    [12] 刘波,李俊,杨小东,等.吸附式压气机叶型及抽吸方案耦合优化设计[J].推进技术,2014,35(9):1194-1201. LIU Bo,LI Jun,YANG Xiaodong,et al.Coupling optimization design for aspirated compressor airfoil and aspirated scheme[J].Journal of Propulsion Technology,2014,35(9):1194-1201.(in Chinese)
    [13] Drela M.Two-dimensional transonic aerodynamic design and analysis using the Euler equations[D].Boston:Massachusetts Institute of Technology,1985.
    [14] Drela M.MISES implementation of modified Abu-Ghannam/Shaw transition criterion(second revision)[R].Cambridge,MA:Massachusetts Institute of Technology,1998.
    [15] Drela M.Low-Reynolds-number airfoil design for the M.I.T. daedalus proto type:a case study[J].Journal of Aircraft,1988,25(8):724-732.
    [16] Drela M,Giles M B.Viscous-inviscid analysis of transonic and low Reynolds number airfoils[J].AIAA Journal,1987,25(10):1347-1355.
    [17] 《航空发动机设计手册》总编委会.发动机设计手册:第8册 压气机[M].北京:航空工业出版社,2000:126-127.
    [18] Sonoda T,Yamaguchi Y,Arima T,et al.Advanced high turning compressor airfoils for low reynolds number condition:Part Ⅰ design and optimization[J].Journal of Turbomachinery,2004,126(7):350-359.
    [19] Suluksna K,Juntasaro E.Assessment of intermittency transport equations for modeling transition in boundary layers subjected to freestream turbulence[J].International Journal of Heat and Fluid Flow,2008,29:48-61.
    [20] Johnson M W,Ercan A H.A physical model for bypass transition[J].International Journal of Heat and Fluid Flow,1999,20:95-104.
  • 加载中
计量
  • 文章访问数:  1065
  • HTML浏览量:  1
  • PDF量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-30
  • 刊出日期:  2016-02-28

目录

    /

    返回文章
    返回