留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of interface debonding on matrix multicracking evolution of fiber-reinfroced ceramic-matrix composites

LI Long-biao

LI Long-biao. Effect of interface debonding on matrix multicracking evolution of fiber-reinfroced ceramic-matrix composites[J]. 航空动力学报, 2016, 31(3): 527-538. doi: 10.13224/j.cnki.jasp.2016.03.002
引用本文: LI Long-biao. Effect of interface debonding on matrix multicracking evolution of fiber-reinfroced ceramic-matrix composites[J]. 航空动力学报, 2016, 31(3): 527-538. doi: 10.13224/j.cnki.jasp.2016.03.002
LI Long-biao. Effect of interface debonding on matrix multicracking evolution of fiber-reinfroced ceramic-matrix composites[J]. Journal of Aerospace Power, 2016, 31(3): 527-538. doi: 10.13224/j.cnki.jasp.2016.03.002
Citation: LI Long-biao. Effect of interface debonding on matrix multicracking evolution of fiber-reinfroced ceramic-matrix composites[J]. Journal of Aerospace Power, 2016, 31(3): 527-538. doi: 10.13224/j.cnki.jasp.2016.03.002

Effect of interface debonding on matrix multicracking evolution of fiber-reinfroced ceramic-matrix composites

doi: 10.13224/j.cnki.jasp.2016.03.002
基金项目: 

Postdoctoral Science Foundation of China(Grant No.2012M511274)

Supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20140813)

Introduction of Talents Scientific Research Foundation of Nanjing University of Aeronautics and Astronautics(Grant No.56YAH12034).

详细信息
    作者简介:

    LI Long-biao,E-mail:llb451@nuaa.edu.cn

  • 中图分类号: V21

Effect of interface debonding on matrix multicracking evolution of fiber-reinfroced ceramic-matrix composites

Funds: 

Postdoctoral Science Foundation of China(Grant No.2012M511274)

Supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20140813)

Introduction of Talents Scientific Research Foundation of Nanjing University of Aeronautics and Astronautics(Grant No.56YAH12034).

  • 摘要: An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites). The Budiansky-Hutchinson-Evans shear-lag model was adopted to analyse the micro-stress field of the damaged composites. The critical matrix strain energy criterion, which presupposes the existence of an ultimate or critical matrix strain energy with matrix, was obtained to simulate the matrix multicracking evolution of CMCs. With the increase of the applied stress, the matrix multicracking and fiber/matrix interface debonding occurred to dissipate the additional energy entered into the composites. The fiber/matrix interface debonded length under matrix multicracking evolution was obtained by treating the interface debonding as a particular crack propagation problem. The conditions for no-debonding and debonding during the evolution of matrix multicracking were discussed in terms of two interfacial properties, i.e., the interface shear stress and interface debonded toughness. When the fiber/matrix interface was bonded, the matrix multicracking evolution was much more intense compared with the interface debonding; when the fiber/matrix interface was debonded, the matrix crack density increased with the increasing of interface shear stress and interface debonded energy. The theoretical results were compared with experimental data of unidirectional SiC/CAS(calcium alumina silicate), SiC/CAS-Ⅱ and SiC/borosilicate composites.

     

  • [1] Naslain R.Design,preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:an overview[J].Composites Science and Technology,2004,64(2):155-170.
    [2] Schmidt S,Beyer S,Knabe H,et al.Advanced ceramic matrix composite materials for current and future propulsion system applications[J].Acta Astronautics,2004,55(3):409-420.
    [3] DiCarlo J A,Roode M.Ceramic composite development for gas turbine hot section components[R].ASME Paper GT2006-90151,2006.
    [4] Stephen T.General Electric primes CMC for turbine blades[EB/OL].[2014-07-10].http://www.flightglobal.com/news/articles/general-electric-primes-cmc-for-turbine-blades-349834/.
    [5] ZHANG Litong,CHENG Laifeng,LUAN Xingang,et al.Environmental performance testing system for thermostructure materials applied in aeroengines[J].Key Engineering Materials,2006,313:183-190.
    [6] Curtin W A,Ahn B K,Takeda N.Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites[J].Acta Materialia,1998,46(10):3409-3420.
    [7] Solti J P,Mall S,Robertson D D.Modeling damage in unidirectional ceramic-matrix composites[J].Composites Science and Technology,1995,54(1):55-66.
    [8] Daniel I M,Lee J W.The behavior of ceramic matrix fiber composites under longitudinal loading[J].Composites Science and Technology,1993,46(2):105-113.
    [9] Aveston J,Cooper G A,Kelly A.Single and multiple fracture[C]//Proceedings of Properties of Fiber Composites.Guildford,England:National Physical Laboratory,1971:15-26.
    [10] Zok F W,Spearing S M.Matrix crack spacing in brittle matrix composites[J].Acta Metall Mater,1992,40(8):2033-2043.
    [11] Zhu H,Weitsman Y.The progression of failure mechanisms in unidirectional reinforced ceramic composites[J].Journal of the Mechanics Physics of Solids,1994,42(10):1601-1632.
    [12] Curtin W A.Multiple matrix cracking in brittle matrix composites[J].Acta Metall Mater,1993,41(5):1369-1377.
    [13] Morscher G N,Singh M,Kiser D,et al.Modeling stress-dependent matrix cracking and stress-strain behavior in 2D woven SiC fiber reinforced CVI SiC composites[J].Composites Science and Technology,2007,67(6):1009-1017.
    [14] Gowayed Y,Ojard G,Santhosh U,et al.Modeling of crack density in ceramic matrix composites[EB/OL].[2014-08-07].http://jcm.sagepub.com/content/early/2014/08/07/0021998314545188] abstract.
    [15] Gao Y C,Mai Y,Cotterell B.Fracture of fiber-reinforced materials[J].Journal of Applied Mathematics and Physics,1988,39(7):550-572.
    [16] Stang H,Shah S.Failure of fiber-reinforced composites by pull-out fracture[J].Journal of Materials Science,1986,21(3):953-957.
    [17] Budiansky B,Hutchinson J W,Evans A G.Matrix fracture in fiber-reinforced ceramics[J].Journal of the Mechanics Physics and Solids,1986,34(2):167-189.
    [18] Hsueh C H.Crack-wake interfacial debonding criteria for fiber-reinforced ceramic composites[J].Acta Materialia,1996,44(6):2211-2216.
    [19] Sun Y J,Singh R N.The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite[J].Acta Materialia,1998,46(5):1657-1667.
    [20] Pryce A W,Smith P A.Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cyclic loading[J].Acta Metallurgica et Materialia,1993,41(4):1269-1281.
    [21] Domergue J M,Vagaggini E,Evans A G.Relationship between hysteresis measurements and the constituent properties of ceramic matrix composites:Ⅱ experimental studies on unidirectional materials[J].Journal of the American Ceramic Society,1995,78(10):2721-2731.
    [22] Beyerle D S,Spearing S M,Zok F W,et al.Damage and failure in unidirectional ceramic matrix composites[J].Journal of the American Ceramic Society,1992,75(10):2719-2725.
    [23] Okabe T,Komotori J,Shimizu M,et al.Mechanical behavior of SiC fiber reinforced brittle-matrix composites[J].Journal of Material Science,1999,34(14):3405-3412.
  • 加载中
计量
  • 文章访问数:  983
  • HTML浏览量:  1
  • PDF量:  423
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-19
  • 刊出日期:  2016-03-28

目录

    /

    返回文章
    返回