留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边界层厚度对腔体气动声学特性影响数值模拟

张群峰 闫盼盼 黎军

张群峰, 闫盼盼, 黎军. 边界层厚度对腔体气动声学特性影响数值模拟[J]. 航空动力学报, 2016, 31(3): 717-725. doi: 10.13224/j.cnki.jasp.2016.03.024
引用本文: 张群峰, 闫盼盼, 黎军. 边界层厚度对腔体气动声学特性影响数值模拟[J]. 航空动力学报, 2016, 31(3): 717-725. doi: 10.13224/j.cnki.jasp.2016.03.024
ZHANG Qun-feng, YAN Pan-pan, LI Jun. Numerical simulation on influence of boundary-layer thickness on the cavity aero-acoustic characteristics[J]. Journal of Aerospace Power, 2016, 31(3): 717-725. doi: 10.13224/j.cnki.jasp.2016.03.024
Citation: ZHANG Qun-feng, YAN Pan-pan, LI Jun. Numerical simulation on influence of boundary-layer thickness on the cavity aero-acoustic characteristics[J]. Journal of Aerospace Power, 2016, 31(3): 717-725. doi: 10.13224/j.cnki.jasp.2016.03.024

边界层厚度对腔体气动声学特性影响数值模拟

doi: 10.13224/j.cnki.jasp.2016.03.024
基金项目: 

国家自然科学基金(11172283)

详细信息
    作者简介:

    张群峰(1972-),男,浙江富阳人,讲师,博士,研究方向为应用计算流体力学.

  • 中图分类号: V211.3

Numerical simulation on influence of boundary-layer thickness on the cavity aero-acoustic characteristics

  • 摘要: 为了研究来流边界层厚度对开式腔体气动声学特性的影响,基于分离涡模拟方法,计算了来流马赫数为2.0条件下,不同来流边界层厚度与腔体深度比时,长深比为5.88的腔体流动特性,得到了该腔体声压级的频谱特性.计算结果表明:随着来流边界层厚度增加,形成的剪切层稳定性增强,失稳后上下摆动幅度减少,失稳生成的大尺度涡与超声速主流的相互作用减弱,使得大尺度涡发展到腔体后缘时所具有的平动动能和转动动能降低.大尺度涡撞击腔体后缘在腔体内形成的气动噪声的声压级降低,最大减小幅度达7.5dB.同时各阶模态的频率也发生偏移,偏移值在100Hz左右.基于新的假设重新推导了Rossiter公式,明确了经验常数的物理意义,并以此解释了频率偏移现象.

     

  • [1] 黎军,李天,张群峰.开式流动腔体的流动机理与控制[J].实验流体力学,2008,22(1):80-83. LI Jun,LI Tian,ZHANG Qunfeng.The mechanism and control of open cavity flow[J].Journal of Experiments in Fluid Mechanics,2008,22(1):80-83.(in Chinese)
    [2] Beresh S J,Wagner J L,Pruett B O M.Supersonic flow over a finite-width rectangular cavity[J].AIAA Journal,2015,53(2):296-310.
    [3] ZHUANG Ning,Alvi F S,Shih C.Another look at super-sonic cavity flows and their control[J].AIAA-2005-2803,2005.
    [4] ZHUANG Ning,Alvi F S,Alkislar M B C.Supersonic cavity flows and their control[J].AIAA Journal,2006,44(9):2118-2128.
    [5] Gai S L,Kleine H,Neely A J,et al.Supersonic flow over a shallow open rectangular cavity[J].Journal of Aircraft,2014,52(2):609-616.
    [6] Handa T,Miyachi H,Kakuno H,et al.Modeling of a feedback mechanism in supersonic deep-cavity flows[J].AIAA Journal,2015,53(2):420-425.
    [7] Li W,Nonomura T,Oyama A,et al.Feedback mechanism in supersonic laminar cavity flows[J].AIAA Journal,2013,51(1):253-257.
    [8] 杨党国,李建强,范召林.超声速来流边界层厚度对浅腔声学特性的影响[J].航空动力学报,2010,25(4):907-911. YANG Dangguo,LI Jianqiang,FAN Zhaolin.Shallow cavity noise influencing by boundary-layer thickness at supersonic speeds[J].Journal of Aerospace Power,2010,25(4):907-911.(in Chinese)
    [9] 谭玉婷,伍贻兆,田书玲.基于DES的二维和三维空腔流动特性研究[J].航空计算技术,2010,40(1):67-70. TAN Yuting,WU Yizhao,TIAN Shuling.Numerical simulation of 2D/3D cavity flows using DES[J].Aeronautical Computing Technique,2010,40(1):67-70.(in Chinese)
    [10] 司海青,王同光.边界条件对三维空腔流动振荡的影响[J].南京航空航天大学学报,2006,38(5):67-70. SI Haiqing,WANG Tongguang.Influence of boundary condition on 3-D cavity flow-induced oscillaions[J].Journal of Nanjing University of Aeronautics and Astronautics,2006,38(5):67-70.(in Chinese)
    [11] Boydston J D,Squires K D,Forsythe J R.Detached eddy simulation of high reynolds number flow over a rectangular cavity[R].AIAA-2008-606,2008.
    [12] Ryan F,Janmes E.Nonlinear feedback mechanisms inside a rectangular cavity[J].AIAA Journal,2014,52(10):2127-2141.
    [13] Jonathan G,Lawrence U.Detached eddy simulation of a supersonic cavity flow with and without passive flow control[R].AIAA-2011-3844,2011.
    [14] Ahuja K K,Mendoza J.Effects of cavity dimensions,boundary layer,and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes[R].NASA Report CR-4654,1995.
    [15] 杨党国,罗新福,李建强.来流边界层厚度对开式空腔气动声学特性的影响分析[J].空气动力学学报,2011,29(4):486-490. YANG Dangguo,LUO Xinfu,LI Jianqiang.Analysis of aeroacoustic characteristics in open cavities influenced by boundary-layer thickness[J].Acta Aerodynamica Sinica,2011,29(4):486-490.(in Chinese)
    [16] 李晓东,刘靖东,高军辉.空腔流激震荡发生的数值模拟研究[J].力学学报,2006,38(5):599-604. LI Xiaodong,LIU Jingdong,GAO Junhui.Numerical simulation of flow-induced oscillation and sound generation in a cavity[J].Chinese Journal of Theoretical and Applied Mechanics,2006,38(5):599-604.(in Chinese)
    [17] Blazek J.Computational fulid dynamics principles and applications[M].London:Elsevier,2005:16-18.
    [18] Spalart P R.Detached eddy simulation[J].Annual Review of Fluid Mechanics,2009,41(1):203-229.
    [19] Spalart P R,Jou W H,Strelets M,et al.Comments on the feasibility of LES for wings,and on a hybrid RANS/LES approach[R].Ruston,US:International Conference on DNS/LES,1997.
    [20] Spalart P R,Deck S,Shur M L,et al.A new version of detached-eddy simulation,resistant to ambiguous grid densities[J].Theoretical and Computational Fluid Dynamics,2006,20(3):181-195.
    [21] Shur M L,Spalart P R,Strelets M K,et al.A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J].International Journal of Heat and Fluid Flow,2008,29(6):1638-1649.
    [22] Strelets M.Detached eddy simulation of massively separated flows[R].AIAA-2001-0879,2001.
    [23] Gritskevich M S,Garbaruk A V,Schütze J,et al.Development of DDES and IDDES formulations for the k-ω shear stress transport model[J].Flow,Turbulence and Combustion,2012,88(3):431-449.
    [24] Venkatakrishnan V.On the convergence of limiters and convergence to steady state solutions[R].AIAA 93-0880,1993.
    [25] Rossiter J E.Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R].Farnborough,UK:Aeronautical Research Council,1964.
    [26] Heller H H,Holmes D G,Covert E E.Flow induced pressure oscillations in shallow cavities[J].Journal of Sound and Vibration,1971,18(4):545-546.
    [27] Heller H H,Bliss D B.The physical mechanism of flow induced pressure fluctuations in cavities and concepts of their suppression[R].AIAA 75-491,1975.
    [28] 陈懋章.粘性流体动力学基础[M].北京:高等教育出版社,2002:128-129.
    [29] 李震,张锡文,何枫.基于速度梯度张量的四元分解对若干涡判据的评价[J].物理学报,2014,63(5):054704.1-054704.7. LI Zhen,ZHANG Xiwen,HE Feng.Evaluation of vortex criteria by virtue of the quadruple decomposition of velocity gradient tensor[J].Acta Physica Sinica,2014,63(5):054704.1-054704.7.(in Chinese)
  • 加载中
计量
  • 文章访问数:  929
  • HTML浏览量:  0
  • PDF量:  455
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-22
  • 刊出日期:  2016-03-28

目录

    /

    返回文章
    返回