留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃烧室构型对固体燃料超燃冲压发动机自点火的影响

迟鸿伟 魏志军 李彪 王利和 王宁飞

迟鸿伟, 魏志军, 李彪, 王利和, 王宁飞. 燃烧室构型对固体燃料超燃冲压发动机自点火的影响[J]. 航空动力学报, 2016, 31(8): 1985-1994. doi: 10.13224/j.cnki.jasp.2016.08.025
引用本文: 迟鸿伟, 魏志军, 李彪, 王利和, 王宁飞. 燃烧室构型对固体燃料超燃冲压发动机自点火的影响[J]. 航空动力学报, 2016, 31(8): 1985-1994. doi: 10.13224/j.cnki.jasp.2016.08.025
CHI Hong-wei, WEI Zhi-jun, LI Biao, WANG Li-he, WANG Ning-fei. Influence of combustor shape on self-ignition in solid fuel scramjet[J]. Journal of Aerospace Power, 2016, 31(8): 1985-1994. doi: 10.13224/j.cnki.jasp.2016.08.025
Citation: CHI Hong-wei, WEI Zhi-jun, LI Biao, WANG Li-he, WANG Ning-fei. Influence of combustor shape on self-ignition in solid fuel scramjet[J]. Journal of Aerospace Power, 2016, 31(8): 1985-1994. doi: 10.13224/j.cnki.jasp.2016.08.025

燃烧室构型对固体燃料超燃冲压发动机自点火的影响

doi: 10.13224/j.cnki.jasp.2016.08.025
基金项目: 

国家自然科学基金(51276020)

详细信息
    作者简介:

    迟鸿伟(1986-),男,辽宁本溪人,博士生,主要从事固体燃料超燃冲压发动机研究.

  • 中图分类号: V235.21

Influence of combustor shape on self-ignition in solid fuel scramjet

  • 摘要: 数值研究了PMMA(聚甲基丙烯酸甲酯)在带凹腔的固体燃料超燃冲压发动机燃烧室中的瞬态自点火机理以及燃烧室构型对自点火的影响.基于求解非定常二维轴对称RANS(Reynolds-averaged Navier-Stokes)方程建立数值模型,湍流模型采用SST(shear stress transport) k-ω模型,燃烧模型采用有限速率/涡耗散模型.结果表明:反应物在凹腔提供停留时间内,产生的化学反应热能够持续积累并提高,使得反应气体达到点火温度时,燃烧室能够实现自点火.凹腔长度、凹腔直径、收敛角和平直段直径是燃烧室构型中影响自点火的主要因素.并提出了一种阶梯式凹腔构型,用于增强自点火性能.

     

  • [1] 陈军.超声速流场中凹腔火焰稳定器的点火和稳焰研究[D].长沙:国防科技大学,2006.
    [2] Witt M A.Investigation into the feasibility of using solid fuel ramjets for high supersonic/low hypersonic tactical missiles[D].Monterey,USA:Naval Postgradate School,1989.
    [3] Angus W J.An investigation into the performance characteristics of a solid fuel scramjet propulsion device[D].Monterey,USA:Naval Postgraduate School,1989.
    [4] Ben-Yakar A,Natan B,Gany A.Investigation of a solid fuel scramjet combustor[J].Journal of Propulsion and Power,1998,14(4):447-455.
    [5] Cohen A,Natan B.Experimental investigation of a supersonic combustion solid fuel ramjet[R].AIAA 97-3237,1997.
    [6] Saraf S,Gany A.Testing metallized solid fuel scramjet combustor[R].ISABE Paper 2007-1176,2007.
    [7] 杨向明,刘伟凯,陈林泉,等.固体燃料超燃冲压发动机原理性试验研究[J].固体火箭技术,2012,35(3):319-324. YANG Xiangming,LIU Weikai,CHEN Linquan,et al.Experiment study on the principle of solid fuel scramjet[J].Journal of Solid Rocket Technology,2012,35(3):319-324.(in Chinese)
    [8] Jarymowycz T A,Yang V,Kuo K K.Numerical study of solid-fuel combustion under supersonic crossflows[J].Journal of Propulsion and Power,1992,8(2):346-353.
    [9] Ben-Arosh R,Natan B,Spiegler E,et al.Theoretical study of a solid fuel scramjet combustor[J].Acta Astronautica,1999,45(3):155-166.
    [10] 杨明,孙波.固体燃料超燃冲压发动机燃烧室的数值仿真[J].兵工自动化,2012,31(1):37-41. YANG Ming,SUN Bo.Numerical simulation of a solid fuel scramjet combustors[J].Journal of Ordnance Industry Automation,2012,31(1):37-41.(in Chinese)
    [11] 杨明.固体燃料超燃冲压发动机内流场研究[D].南京:南京理工大学,2012.
    [12] 刘伟凯,陈林泉,杨向明.固体燃料超燃冲压发动机燃烧室掺混燃烧数值研究[J].固体火箭技术,2012,35(4):457-462. LIU Weikai,CHEN Linquan,YANG Xiangming.Numerical study of mixing flows in a solid fuel scramjet combustor[J].Journal of Solid Rocket Technology,2012,35(4):457-462.(in Chinese)
    [13] PEI Xinyan,WU Zhiwen,WEI Zhijun,et al.Numerical investigation on cavity length for solid fuel scramjet[R].AIAA-2012-3830,2012.
    [14] TAO Huan,WEI Zhijun.Numerical investigation on the effects of cavity in solid fuel scramjet[R].AIAA-2013-3974,2013.
    [15] LI Biao,WEI Zhijun,CHI Hongwei.Numerical analysis of solid fuel scramjet operating at Mach 4 to 6[R].AIAA-2013-3695,2013.
    [16] 王利和,武志文,迟鸿伟,等.固体燃料超燃冲压发动机燃烧室流场准一维计算方法研究[J].固体火箭技术,2013,36(6):742-747. WANG Lihe,WU Zhiwen,CHI Hongwei,et al.A method of quasi-one dimensional numerical analysis for solid fuel scramjet combustor performance[J].Journal of Solid Rocket Technology,2013,36(6):742-747.(in Chinese)
    [17] 王利和,武志文,刘昶秀,等.入口气流参数对固体燃料超燃冲压发动机燃烧室性能的影响分析[J].兵工学报,2014,35(5):691-696. WANG Lihe,WU Zhiwen,LIU Changxiu,et al.The effect of entrance airflow parameters on solid fuel scramjet combustor performance[J].Acta Armamentarii,2014,35(5):691-696.(in Chinese)
    [18] 迟鸿伟,魏志军,王利和,等.固体燃料超燃冲压发动机燃烧室中PMMA自点火性能数值研究[J].推进技术,2014,35(6):799-808. CHI Hongwei,WEI Zhijun,WANG Lihe,et al.Numerical investigation on self-ignition of PMMA in solid fuel scramjet[J].Journal of Propulsion Technology,2014,35(6):799-808.(in Chinese)
    [19] Ingenito A,Bruno C.Physics and regimes of supersonic combustion[J].AIAA Journal,2010,48(3):515-525.
    [20] Seshadri K,Williams F A.Structure and extinction of counter flow diffusion flames above condensed fuels:comparison between ploy (methyl-methacrylate) and its liquid monomer,both burning in nitrogen-air mixtures[J].Journal of Polymer Science:Polymer Chemistry Edition,1978,16(7):1755-1778.
    [21] Tsai T H,Li M J,Shih I Y.Experimental and numerical study of auto-ignition and pilot ignition of PMMA plates in a cone calorimeter[J].Combustion and Flame,2001,124(3):466-480.
  • 加载中
计量
  • 文章访问数:  945
  • HTML浏览量:  0
  • PDF量:  590
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-19
  • 刊出日期:  2016-08-28

目录

    /

    返回文章
    返回