留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液氧甲烷发动机台阶型冷却通道的耦合传热特性

孙冰 宋佳文

孙冰, 宋佳文. 液氧甲烷发动机台阶型冷却通道的耦合传热特性[J]. 航空动力学报, 2016, 31(12): 2972-2978. doi: 10.13224/j.cnki.jasp.2016.12.020
引用本文: 孙冰, 宋佳文. 液氧甲烷发动机台阶型冷却通道的耦合传热特性[J]. 航空动力学报, 2016, 31(12): 2972-2978. doi: 10.13224/j.cnki.jasp.2016.12.020
SUN Bing, SONG Jia-wen. Coupled heat transfer characterisitcs of stepped cooling channel of liquid oxygen/methane rocket engine[J]. Journal of Aerospace Power, 2016, 31(12): 2972-2978. doi: 10.13224/j.cnki.jasp.2016.12.020
Citation: SUN Bing, SONG Jia-wen. Coupled heat transfer characterisitcs of stepped cooling channel of liquid oxygen/methane rocket engine[J]. Journal of Aerospace Power, 2016, 31(12): 2972-2978. doi: 10.13224/j.cnki.jasp.2016.12.020

液氧甲烷发动机台阶型冷却通道的耦合传热特性

doi: 10.13224/j.cnki.jasp.2016.12.020
详细信息
    作者简介:

    孙冰(1960-),女,黑龙江佳木斯人,教授、博士生导师,博士,主要从事火箭发动机热防护技术研究.

  • 中图分类号: V434.14

Coupled heat transfer characterisitcs of stepped cooling channel of liquid oxygen/methane rocket engine

  • 摘要: 为了研究液氧甲烷发动机再生冷却通道中跨临界甲烷的流动和传热特性,以及冷却通道较大幅度的突扩突缩对冷却效果的影响,采用整场直接耦合的方法对推力室三维耦合传热进行了数值模拟,考虑了燃气的非平衡流动.通过计算得到了推力室三维温度场和流场.计算结果表明:由于喉部截面附近存在较强的二次流,燃气侧壁面温度的最大值出现在喉部上游.由于突扩突缩处存在较强的旋涡运动,冷却剂的湍流强度增强,冷却剂侧表面传热系数显著提高,燃气侧壁面温度出现局部极小值,同时也产生了较大的局部损失.由于铜内衬热阻比镍外套热阻小得多,从燃烧室进入的大部分热量在冷却通道底面和侧面被冷却剂吸收.冷却通道底面的温度和热流密度沿程变化比顶面更剧烈.

     

  • [1] 禹天福,李亚裕.液氧/甲烷发动机的应用前景[J].航天制造技术,2007(2):1-4.
    [2] 王维彬,孙纪国.航天动力发展的生力军:液氧甲烷火箭发动机[J].航天制造技术,2011(2):3-6.
    [3] Neill T,Judd D,Veith E,et al.Practical uses of liquid methane in rocket engine applications[J].Acta Astronautica,2009,65(5):696-705.
    [4] Younglove B A,Ely J F.Thermophysical properties of flu-ids:Ⅱ methane,ethane,propane,isobutane,and normal butane[J].Journal of Physical and Chemical Reference Data,1987,16(4):577-798.
    [5] Urbano A,Nasuti F.Onset of heat transfer deterioration in supercritical methane flow channels[J].Journal of Ther-mophysics and Heat Transfer,2013,27(2):298-308.
    [6] 康玉东,孙冰.再生冷却通道跨临界甲烷流动传热研究[J].航空动力学报,2010,25(11):2493-2497. KANG Yudong,SUN Bing.Flow and heat transfer inves-tigation of transcritical methane in regenerative cooling channels[J].Journal of Aerospace Power,2011,25(11):2493-2497.(in Chinese)
    [7] KANG Yudong,SUN Bing.Numerical simulation of liquid rocket engine thrust chamber regenerative cooling[J].Journal of Thermophysics and Heat Transfer,2011,25(1):155-164.
    [8] Wadel M F.Comparison of high aspect ratio cooling channel designs for a rocket combustion chamber[R].AIAA 97-2913,1997.
    [9] 陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [10] Yang B,Seshadri K.Asymptotic analysis of the structure of nonpremixed methane air flames using reduced chemistry[J].Combustion Science and Technology,1993,88(1/2):115-132.
    [11] Magnussen B F,Hjertager B W.On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow[R].AIAA 81-37570,1981.
    [12] Gran I R,Magnussen B F.A numerical study of a bluff-body stabilized diffusion flame:Part 2 influence of com-bustion modeling and finite-rate chemistry[J]. Combustion Science and Technology,1996,119(1/2/3/4/5/6):191-217.
    [13] 康玉东,孙冰.燃气非平衡流再生冷却流动传热数值模拟[J].推进技术,2011,32(1):119-124. KANG Yudong,SUN Bing.Numerical simulation of re-generative cooling flow and heat transfer with nonequi-librium flow[J].Journal of Propulsion Technology,2011,32(1):119-124.(in Chinese)
    [14] Lemmon E W,Huber M L,McLinden M O.NIST reference database 23:NIST reference fluid thermodynamic and transport properties REFPROP[CP/DK].Boulder,CO:National Institute of Standards and Technology,2010.
    [15] Esposito J J,Zabora R F.Thrust chamber life prediction:Volume 1 mechanical and physical properties of high performance rocket nozzle materials[R].NASA-CR-134806,1975.
    [16] Sturgis J C,Mudawar I.Single-phase heat transfer en-hancement in a curved,rectangular channel subjected to concave heating[J].International Journal of Heat and Mass Transfer,1999,42(7):1255-1272.
    [17] 王新月.气体动力学基础[M].西安:西北工业大学出版社,2006.
    [18] Divalentin J,Naraghi M H.Effects cooling channel curvature on coolant secondary flow and heat transfer[R].AIAA-2010-6973,2010.
  • 加载中
计量
  • 文章访问数:  788
  • HTML浏览量:  2
  • PDF量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-09
  • 刊出日期:  2016-12-28

目录

    /

    返回文章
    返回