留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机进口支板外部热气膜对水滴撞击特性的影响

柯鹏 张韵 于广锋 杨春信

柯鹏, 张韵, 于广锋, 杨春信. 航空发动机进口支板外部热气膜对水滴撞击特性的影响[J]. 航空动力学报, 2017, 32(3): 621-629. doi: 10.13224/j.cnki.jasp.2017.03.014
引用本文: 柯鹏, 张韵, 于广锋, 杨春信. 航空发动机进口支板外部热气膜对水滴撞击特性的影响[J]. 航空动力学报, 2017, 32(3): 621-629. doi: 10.13224/j.cnki.jasp.2017.03.014
Influence of exterior hot-film on droplet impingement characteristics over aero-engine inlet strut[J]. Journal of Aerospace Power, 2017, 32(3): 621-629. doi: 10.13224/j.cnki.jasp.2017.03.014
Citation: Influence of exterior hot-film on droplet impingement characteristics over aero-engine inlet strut[J]. Journal of Aerospace Power, 2017, 32(3): 621-629. doi: 10.13224/j.cnki.jasp.2017.03.014

航空发动机进口支板外部热气膜对水滴撞击特性的影响

doi: 10.13224/j.cnki.jasp.2017.03.014
基金项目: 国家重点基础研究发展计划(2012CB720100);中央高校基本科研业务费(YWF-14-JTXY-009)

Influence of exterior hot-film on droplet impingement characteristics over aero-engine inlet strut

  • 摘要: 设计了4种不同气膜缝角度的防护结构,发展并验证了基于欧拉法框架的水滴撞击算法,针对直径为20μm的过冷小水滴,定量分析了气膜缝角度和吹风比对支板壁面水滴撞击特性的影响规律.研究结果表明,外部热气膜射流对水滴有明显吹袭作用,导致壁面平均局部水收集系数和撞击极限减小,而且气膜缝开孔位置越靠近支板前缘,吹袭水滴效果越明显.4种结构的平均局部水收集系数与无气膜缝结构相比分别下降了82%,8%,1%和0.5%.此外,吹风比增大会导致前缘最大局部水收集系数和撞击极限的减小变明显,尤其是气膜缝角度为5°结构的水滴撞击特性受吹风比影响最显著.前缘区域局部水收集系数呈现了相似的分布规律;支板后部区域,当吹风比增大到一定程度时,水滴被完全吹除.

     

  • [1] Thomas S K,Cassoni R P.Aircraft anti-icing and de-icing techniques and modeling[J].Journal of Aircraft,1996,33(5):841-854.
    [2] 李云单,陆海鹰,朱惠人.航空发动机热气防冰结构的冲击换热特性研究[J].航空发动机,2011,37(5):16-20,52.LI Yundan,LU Haiying,ZHU Huiren.Study of impacting heat transfer characteristics for aeroengine heat anti-icing structure[J].Aeroengine,2011,37(5):16-20,52.(in Chinese)
    [3] Fenot M,Dorignaca E,Vulliermea J J.An experimental study on hot round jets impinging a concave surface[J].International Journal of Heat and Fluid Flow,2008,29(4):945-956.
    [4] Metzger D E,Baltzer R T,Jenkins C W.Impingement cooling performance in gas turbine airfoils including effects of leading edge sharpness[J].Journal of Engineering for Gas Turbines and Power,1972,94(3):219-225.
    [5] 周雷声,朱惠人,许都纯,等.带射流收缩通道内部换热特性数值模拟[J].机械设计与制造,2011(6):230-232.ZHOU Leisheng,ZHU Huiren,XU Duchun,et al.N-umerical simulation on internal heat transfer of an contraction channel with jets impingement[J].Machinery Design and Manufacture,2011(6):230-232.(in Chinese)
    [6] Kadotani K,Goldstein R J.On the nature of jet entering a turbulent flow:Part B film cooling performance[J].Journal of Engineering for Gas Turbines and Power,1979,101(3):466-470.
    [7] Schwarz S G,Goldstein R J.The two-dimensional behavior of film cooling jets on concave surfaces[J].Journal of Turbomachinery,1989,111(2):124-130.
    [8] 戴萍,林枫.涡轮叶片前缘气膜冷却数值模拟[J].航空动力学报,2009,24(3):519-525.DAI Ping,LIN Feng.Numerical simulation of film cooling in leading edge of turbine blade[J].Journal of Aerospace Power,2009,24(3):519-525.(in Chinese)
    [9] Rozati A,Tafti D K.Large eddy simulation of leading edge film cooling:Part Ⅱ heat transfer and effect of blowing ratio[J].Journal of Turbomachinery,2008,130(4):567-575.
    [10] Goldstein R J.Film cooling[J].Advances in Heat Transfer,1971,7(1):321-379.
    [11] Patankar S V,Rastogi A K,Whitelaw J H.The effectiveness of three-dimensional film-cooling slots:Ⅱ predictions[J].International Journal of Heat and Mass Transfer,1973,16(9):1673-1681.
    [12] Crawford M E,Kays W M,Moffat R J.Full-coverage film cooling:Part Ⅱ heat transfer data and numerical simulation[J].Journal of Engineering for Power,1980,102(4):1006-1013.
    [13] Silva G A L,Silvares O M,Zerbini E J G J.Numerical simulation of airfoil thermal anti-ice operation:Part 2 implementation and results[J].Journal of Aircraft,2007,44(2):636-640.
    [14] 杨军,郭文,娄德仓.发动机防冰支板水滴撞击特性的数值研究[J].燃气涡轮试验与研究,2011,24(1):19-24.YANG Jun,GUO Wen,LOU Decang.Numerical analysis of trajectories of water droplets on the anti-icing vane of an engine[J].Gas Turbine Experiment and Research,2011,24(1):19-14.(in Chinese)
    [15] 马辉,陈维建,孟繁鑫,等.发动机导向叶片热气防冰腔结构改进[J].南京航空航天大学学报,2013,45(1):70-74.MA Hui,CHEN Weijian,MENG Fanxin,et al.Improvement of hot-air anti-icing structure of engine inlet vane[J].Journal of Nanjing University of Aeronautics and Astronautic,2013,45(1):70-74.(in Chinese)
    [16] Ogretim E O,Huebsch W W,Narramore J,et al.Investigation of relative humidity and induced-vortex effects on aircraft icing[J].Journal of Aircraft,2007,44(6):1805-1814.
    [17] 徐国强.航空发动机传热学[M].北京:北京航空航天大学出版社,2005:177-178.
    [18] Coletti F,Elkins J C,Eaton J K.An inclined jet in crossflow under the effect of streamwise pressure gradients[J].Experiments in Fluids,2013,54(3):848-869.
    [19] Al-Khalil K M,Miller D,Wright W B.Validation of NASA thermal ice protection computer codes:Ⅲ the validation of ANTICE[R].AIAA 97-0051,1997.
    [20] Yu C,Ke P,Yu G,et al.Investigation of water impingement on a multi-element high-lift airfoil by Lagrangian and Eulerian approach[J].Propulsion and Power Research,2015,4(3):161-168.
  • 加载中
计量
  • 文章访问数:  752
  • HTML浏览量:  0
  • PDF量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-21
  • 刊出日期:  2017-03-28

目录

    /

    返回文章
    返回