留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于临界平面法的镍基单晶高温合金高周疲劳寿命模型

王荣桥 李懋源 蒋康河 胡殿印

王荣桥, 李懋源, 蒋康河, 胡殿印. 基于临界平面法的镍基单晶高温合金高周疲劳寿命模型[J]. 航空动力学报, 2017, 32(3): 677-682. doi: 10.13224/j.cnki.jasp.2017.03.020
引用本文: 王荣桥, 李懋源, 蒋康河, 胡殿印. 基于临界平面法的镍基单晶高温合金高周疲劳寿命模型[J]. 航空动力学报, 2017, 32(3): 677-682. doi: 10.13224/j.cnki.jasp.2017.03.020
High cycle fatigue life model of nickel-based single crystal superalloys based on critical plane approach[J]. Journal of Aerospace Power, 2017, 32(3): 677-682. doi: 10.13224/j.cnki.jasp.2017.03.020
Citation: High cycle fatigue life model of nickel-based single crystal superalloys based on critical plane approach[J]. Journal of Aerospace Power, 2017, 32(3): 677-682. doi: 10.13224/j.cnki.jasp.2017.03.020

基于临界平面法的镍基单晶高温合金高周疲劳寿命模型

doi: 10.13224/j.cnki.jasp.2017.03.020
基金项目: 国家自然科学基金(51375031); 北京市科技专项(Z151100001615066)

High cycle fatigue life model of nickel-based single crystal superalloys based on critical plane approach

  • 摘要: 由于目前,国外已经基于八面体滑移系,采用临界平面法对镍基单晶高温合金〈001〉取向的高周疲劳寿命进行预测.然而,该方法未考虑〈111〉取向受载时滑移系参量的特点,所以不能较准确地预测镍基单晶高温合金〈111〉取向的高周疲劳寿命.为此,选取临界平面时综合考虑六面体、八面体滑移系,选定疲劳参量最大的滑移面作为临界平面,采用SSR(shear stress range),CCB(Chu-Conle-Bonnen),Walls寿命模型进行镍基单晶高温合金高周疲劳寿命预测,并根据800℃下DD6镍基单晶高温合金〈001〉,〈011〉,〈111〉3个取向的高周疲劳试验结果,对寿命模型的预测精度进行验证.结果表明:当基于两种滑移系预测镍基单晶高温合金的高周疲劳寿命时,寿命模型的拟合系数可达到0.9134.

     

  • [1] Cowles B A.High cycle fatigue in aircraft gas turbines an industry perspective[J].International Journal of Fracture,1996,80(2):147-163.
    [2] Srinivasan A V.Flutter and resonant vibration characteristics of engine blades[J].Journal of Engineering for Gas Turbines and Power,1997,119(4):742-775.
    [3] 张庆民,张万秋,王立波.发动机涡轮Ⅱ级叶片断裂原因分析[J].失效分析与预防,2010,5(1):35-38.ZHANG Qingmin,ZHANG Wanqiu,WANG Libo.Failure analysis of certain model aeroengine Ⅱ grade turbine blade[J].Failure Analysis and Prevention,2010,5(1):35-38.(in Chinese)
    [4] 孙晓峰,金涛,周亦胄,等.镍基单晶高温合金研究进展[J].中国材料进展,2012,31(12):1-11.SUN Xiaofeng,JIN Tao,ZHOU Yizhou,et al.Research progress of nickel-base single crystal supealloys[J].Materials China,2012,31(12):1-11.(in Chinese)
    [5] 胡春燕,刘新灵,陶春虎.DD6单晶高温合金低周疲劳断裂特征的研究[J].失效分析与预防,2014,9(4):224-227.HU Chunyan,LIU Xinling,TAO Chunhu.Low-cycle fatigue fracture features of single crystal superalloy DD6[J].Failure Analysis and Prevention,2014,9(4):224-227.(in Chinese)
    [6] YU Jinjiang,SUN Yuelai,SUN Xiaofeng,et al.Anisotropy of high cycle fatigue behavior of a Ni-base single crystal superalloy[J].Materials Science and Engineering:A,2013,566:90-95.
    [7] LIU L,Husseini N S,Torbet C J,et al.In situ imaging of high cycle fatigue crack growth in single crystal nickel-base superalloys by synchrotron X-radiation[J].Journal of Engineering Materials and Technology,2008,130(2):223-225.
    [8] Liu Y,Yu J J,Xu Y,et al.High cycle fatigue behavior of a single crystal superalloy at elevated temperatures[J].Materials Science and Engineering:A,2007,454/455:357-366.
    [9] SHI Zhenxue,LI Jiarong,LIU Shizhong,et al.High cycle fatigue behavior of the second generation single crystal superalloy DD6[J].Transactions of Nonferrous Metals Society of China,2011,21(5):998-1003.
    [10] Naik R A,Deluca D P,Shah D M.Critical plane fatigue modeling and characterization of single crystal nickel superalloys[J].Journal of Engineering for Gas Turbines and Power,2004,126(2):391-400.
    [11] TIAN Sugui,LI Qiuyang,SU Yong,et al.Microstructure evolution and FEM analysis of a [111] oriented single crystal nickel-based superalloy during tensile creep[J].Applied Physics:A,2015,118(4):1407-1417.
    [12] Arakere N K,Swanson G A P.Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys[J].Journal of Engineering for Gas Turbines and Power,2002,124(1):161-176.
    [13] 王荣桥,荆甫雷,胡殿印.基于临界平面的镍基单晶高温合金疲劳寿命预测模型[J].航空动力学报,2013,28(11):2587-2592.WANG Rongqiao,JING Fulei,HU Dianyin.Fatigue life prediction model based on critical plane of nickel-based single crystal superalloy[J].Journal of Aerospace Power,2013,28(11):2587-2592.(in Chinese)
    [14] 荆甫雷.单晶涡轮叶片热机械疲劳寿命评估方法研究[D].北京:北京航空航天大学,2013.JING Fulei.Research on thermo-mechanical fatigue life assessment of single crystal turbine blades[D].Beijing:Beijing University of Aeronautics and Astronautics,2013.(in Chinese)
    [15] Karolczuk A,Macha E.A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials[J].International Journal of Fracture,2005,134(3):267-304.
    [16] Ranjan S,Arakere N K.A fracture mechanics based methodology for fatigue life prediction of single crystal nickel based superalloys[J].Journal of Engineering for Gas Turbines and Power,2008,130(3):032501.1-032501.8.
    [17] Sayyah T,Swanson G R,Schonberg W P.A study of single crystal fatigue failure criteria[R].NAS8-40836,2000.
    [18] 《航空发动机设计用材料数据手册》编委会.航空发动机设计用材料数据手册:第4册[M].北京:航空工业出版社,2010.
  • 加载中
计量
  • 文章访问数:  772
  • HTML浏览量:  2
  • PDF量:  431
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-25
  • 刊出日期:  2017-03-28

目录

    /

    返回文章
    返回