留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卫星动量轮灵敏性变异分析

夏新涛 常振 叶亮 李云飞 邱明

夏新涛, 常振, 叶亮, 李云飞, 邱明. 卫星动量轮灵敏性变异分析[J]. 航空动力学报, 2017, 32(3): 704-713. doi: 10.13224/j.cnki.jasp.2017.03.024
引用本文: 夏新涛, 常振, 叶亮, 李云飞, 邱明. 卫星动量轮灵敏性变异分析[J]. 航空动力学报, 2017, 32(3): 704-713. doi: 10.13224/j.cnki.jasp.2017.03.024
Variation analysis of sensitivity for satellite momentum wheel[J]. Journal of Aerospace Power, 2017, 32(3): 704-713. doi: 10.13224/j.cnki.jasp.2017.03.024
Citation: Variation analysis of sensitivity for satellite momentum wheel[J]. Journal of Aerospace Power, 2017, 32(3): 704-713. doi: 10.13224/j.cnki.jasp.2017.03.024

卫星动量轮灵敏性变异分析

doi: 10.13224/j.cnki.jasp.2017.03.024
基金项目: 国家自然科学基金(51475144, 51075123); 河南省高校科技创新团队支持计划(13IRTSTHN025)

Variation analysis of sensitivity for satellite momentum wheel

  • 摘要: 基于模糊理论提出一种非线性卫星动量轮灵敏性变异分析的数值方法,以工程实际中的模糊相似关系转化为空间向量的模糊等价关系,来评估稳定系统的总体变异本质特征.并通过仿真均匀分布、线性分布以及周期分布的时间数据序列验证了该模型的可行性;以3套卫星动量轮实际稳态运转实验见证了该方法的实用性和有效性.其中动量轮A的最小灵敏系数为0.678,大于0.5阈值,表明其运转期间灵敏性十分良好;动量轮B的最小灵敏系数为0.439,小于0.5阈值,其运转期间灵敏性有所变异;动量轮C的最小灵敏系数等于0.5阈值,其关系最为模糊并介于稳定与变异之间.该模型实时预测并描述了动量轮灵敏性变异过程,且适用于诸多航天领域的非线性乏信息问题.

     

  • [1] 厉海涛,金光,周经伦,等.动量轮维纳过程退化建模与寿命预测[J].航空动力学报,2011,26(3):622-627.LI Haitao,JIN Guang,ZHOU Jinglun,et al.Momentum wheel wiener process degradation modeling and life prediction[J].Journal of Aerospace Power,2011,26(3):622-627.(in Chinese)
    [2] 刘秀海,邓四二,滕弘飞.卫星动量轮轴承组件的仿真可信度评估[J].航空动力学报,2008,23(9):1724-1730.LIU Xiuhai,DENG Sier,TENG Hongfei.Simulation credibility evaluation of the momentum wheel bearing subassembly in the satellite[J].Journal of Aerospace Power,2008,23(9):1724-1730.(in Chinese)
    [3] XIA Xintao,MENG Yanyan,SHANG Yantao,et al.Assessment for the quality of rolling bearing parts based on fuzzy theory[J].Scientific Research and Essays,2014,9(9):363-366.
    [4] 何正嘉,曹宏瑞,訾艳阳,等.机械设备运行可靠性评估的发展与思考[J].机械工程学报,2014,50(2):171-186.HE Zhengjia,CAO Hongrui,ZI Yanyang,et al.Developments and thoughts on operational reliability assessment of mechanical equipment[J].Journal of Mechanical Engineering,2014,50(2):171-186.(in Chinese)
    [5] Aleksandrov A Y,Antipov K A,Platonov A V,et al.Electrodynamic attitude stabilization of a satellite in the konig frame[J].Nonlinear Dynamics,2015,82(3):1-13.
    [6] 王凭慧,范本尧,傅惠民.卫星推力器可靠性评估和寿命预测[J].航空动力学报,2004,19(6):745-748.WANG Pinghui,FAN Benyao,FU Huimin.Reliability assessment and life prediction for satellite engine[J].Journal of Aerospace Power,2004,19(6):745-748.(in Chinese)
    [7] Li G,Zhu Z H,Meguid S A.Libration and transverse dynamic stability control of flexible bare electrodynamic tether systems in satellite deorbit[J].Aerospace Science and Technology,2016,49(2):112-129.
    [8] 刘强,黄秀平,周经伦,等.基于失效物理的动量轮贝叶斯可靠性评估[J].航空学报,2009,30(8):1392-1397.LIU Qiang,HUANG Xiuping,ZHOU Jinglun,et al.Failure-physics-analysis-based method of bayesian reliability estimation for momentum wheel[J].Acta Aeronautica et Astronautica Sinica,2009,30(8):1392-1397.(in Chinese)
    [9] Athanasopoulos N,Lazar M,Bohm C,et al.On stability and stabilization of periodic discrete-time systems with an application to satellite attitude control[J].Automatica,2014,50(12):3190-3196.
    [10] 文永蓬,尚慧琳.间接连接型音叉振动式微机械陀螺的性能变异分析[J].机械设计与制造,2013(7):80-83.WEN Yongpeng,SHANG Huilin.Analysis of performance variation for an indirect connection tuning-fork vibratory microgyroscope[J].Machinery Design and Anufacture,2013(7):80-83.(in Chinese)
    [11] Girondin V,Pekpe K M,Morel H,et al.Bearings fault detection in helicopters using frequency readjustment and cyclostationary analysis[J].Mechanical Systems and Processing,2013,38(2):499-514.
    [12] 彭靖波,谢寿生,武卫,等.航空发动机分布式控制系统指数稳定性分析[J].航空动力学报,2009,24(10):2362-2367.PENG Jingbo,XIE Shousheng,WU Wei,et al.Stability analyzation of aero-engine distributed control system[J].Journal of Aerospace Power,2009,24(10):2362-2367.(in Chinese)
    [13] 高永强,王善坤.旋转机械的可靠性及可靠灵敏度的分析[J].机械制造与自动化,2009,38(5):60-63.GAO Yongqiang,WANG Shankun.Analysis of sensitivity and reliability of turning machine[J].Machine Building and Automation,2009,38(5):60-63.(in Chinese)
    [14] Bruschetta M,Picci G,Saccon A.A variational integrators approach to second order modeling and identification of linear mechanical systems[J].Automatica,2014,50(3):727-736.
    [15] Vasudevan H,Deshpande N C,Rajguru R R.Grey fuzzy multiobjective optimization of process parameters for CNC turning of GFRP/epoxy composites[J].Procedia Engineering,2014,97(97):85-94.
    [16] Jayaswal P.Application of ANN,fuzzy logic and wavelet transform in machine fault diagnosis using vibration signal analysis[J].Journal of Quality in Maintenance Engineering,2010,16(2):190-213.
    [17] 陈霆昊,张海波,孙健国.基于攻角预测模型的航空发动机高稳定性控制[J].航空动力学报,2010,25(7):1676-1682.CHEN Tinghao,ZHANG Haibo,SUN Jianguo.Aero-engine high stability control scheme design based onangle of attack predictive model[J].Journal of Aerospace Power,2010,25(7):1676-1682.(in Chinese)
    [18] Forcellini D,Kelly J M.Analysis of the large deformation stability of elastomeric bearings[J].Journal of Engineering Mechanics,2014,140(6):682-694.
    [19] Boldyrev Y Y,Petukhov E P.Variational problem for a gas journal bearing[J].Fluid Dynamics,2015,50(2):193-202.
    [20] Vavilov V E,Gerasin A A,Ismagilov F R,et al.Stability analysis of hybrid magnetic bearings[J].Journal of Computer and Systems Sciences International,2014,53(1):130-136.
    [21] XIA Xintao,CHEN Long.Fuzzy chaos method for evaluation of nonlinearly evolutionary process of rolling bearing performance[J].Measurement,2013,46(3):1349-1354.
    [22] XIA Xintao,WANG Zhongyu,GAO Yongsheng.Estimation of non-statistical uncertainty using fuzzy-set theory[J].Measurement Science and Technology,2000,11(4):430-435.
  • 加载中
计量
  • 文章访问数:  721
  • HTML浏览量:  4
  • PDF量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-20
  • 刊出日期:  2017-03-28

目录

    /

    返回文章
    返回