留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维增强复合材料涡轮轴结构疲劳寿命预测

沙云东 陈祎航 郝燕平 纪福森 骆丽 贾秋月

沙云东, 陈祎航, 郝燕平, 纪福森, 骆丽, 贾秋月. 纤维增强复合材料涡轮轴结构疲劳寿命预测[J]. 航空动力学报, 2017, 32(4): 769-779. doi: 10.13224/j.cnki.jasp.2017.04.001
引用本文: 沙云东, 陈祎航, 郝燕平, 纪福森, 骆丽, 贾秋月. 纤维增强复合材料涡轮轴结构疲劳寿命预测[J]. 航空动力学报, 2017, 32(4): 769-779. doi: 10.13224/j.cnki.jasp.2017.04.001
Fatigue life prediction of fiber reinforced composites turbine shaft structure[J]. Journal of Aerospace Power, 2017, 32(4): 769-779. doi: 10.13224/j.cnki.jasp.2017.04.001
Citation: Fatigue life prediction of fiber reinforced composites turbine shaft structure[J]. Journal of Aerospace Power, 2017, 32(4): 769-779. doi: 10.13224/j.cnki.jasp.2017.04.001

纤维增强复合材料涡轮轴结构疲劳寿命预测

doi: 10.13224/j.cnki.jasp.2017.04.001
基金项目: 中航产学研创新基金(cxy2013SH17)

Fatigue life prediction of fiber reinforced composites turbine shaft structure

  • 摘要: 研究了连续纤维增强复合材料低压涡轮轴结构在给定低循环载荷作用下的疲劳寿命估算方法.考虑连续纤维增强复合材料结构特性,研究了基于局部应力应变法的低周疲劳寿命预测方法,并对预测方法的有效性进行了验证.基于此方法,计算了某型航空发动机低压涡轮轴的最大应力、应变和疲劳寿命.结果表明:在0°~90°范围内,45°铺层角度的复合材料层疲劳寿命值最大;当金属厚度不变,外层金属和首层复合材料层的疲劳寿命随复合材料厚度增加而增大;当轴结构壁厚保持6mm不变,减小复合材料层的厚度,同时相应增大最内层或最外层金属包套的厚度,其结构疲劳寿命都随着复材层的厚度减小而减小;外层金属包套的寿命则远大于首层复合材料的疲劳寿命.

     

  • [1] 李健康,杨延清,罗贤,等.连续SiC纤维增强Ti基复合材料中的纵向残余热应力分析[J].金属热处理,2007,32(11):65-69.LI Jiankang,YANG Yanqing,LUO Xian,et al.Measurement of the longitudinal thermal residual stress in continuous SiC fiber reinforced titanium matrix composites[J].Heat Treatment of Metals,2007,32(11):65-69.(in Chinese)
    [2] 冯广海,杨延清,罗贤,等.SiC纤维增强Ti基复合材料疲劳研究进展[J].稀有金属材料与工程,2013,42(1):215-220.FENG Guanghai,YANG Yanqing,LUO Xian,et al.Research progresses of fatigue of SiC fiber reinforced titanium matrix composites[J].Rare Metal Materials and Engineering,2013,42(1):215-220.(in Chinese)
    [3] LOU Junhong,YANG Yanqing,LUO Xian,et al.Effects of fiber volume fraction on transverse tensile properties of SiC/Ti-6AI-4V composites[J].Rare Metal Materials and Engineering,2011,40(4):575-579.(in Chinese)
    [4] 梁春华.连续纤维增强的金属基复合材料部件在航空涡扇发动机上的应用[J].航空制造技术,2009(15):32-35.LIANG Chunhua.Application of continuous fiberreinforced metal matrix composite component onturbofan aero-engine[J].Aeronautical Manufacturing Technology,2009(15):32-35.(in Chinese)
    [5] Lutjering G,Williams J C.Titanium[M].New York:Springer-Verlag Berlin heidelberg Press,2003.
    [6] Lee D G,Kim J W,Hwang H Y.Torsional fatigue characteristics of aluminum-composite co-cured shafts with axi al compressive preload[J].Journal of Composite Materials,2004,38(9):737-756.
    [7] Himmel N.Fatigue life predition of laminated polymer matrix composites[J].International Journal of Fatigue,2002,24(2/3/4):349-360.
    [8] 孙庆伟,陆山.航空发动机复合材料主轴优化方案设计方法[J].复合材料学报,2013,30(6):258-263.SUN Qingwei,LU Shan.Design and optimization method for composite main shaft of aircraft engine[J].Acta Materiae Compositae Sinica,2013,30(6):258-263.(in Chinese)
    [9] 崔广群,肖文刚,王鹏飞.碳纤维复合材料传动轴承扭性能研究[J].玻璃钢/复合材料,2014(7):74-77.CUI Guangqun,XIAO Wengang,WANG Pengfei.The study on the torsional properties of the carbon fiber composite drive shaft[J].FRP/CM,2014(7):74-77.(in Chinese)
    [10] SHA Yundong,JIA Qiuyue.Influence of laminate scheme on design of continuous fiber reinforced composite turbofan engine shaft[J].Applied Mechanics Materials,2015,(721):803-808.
    [11] Hyde T H,Punyong K,Becker A A.Experimental failure investigation for a titanium metal matrix composite with +45° and ±45° fibre orientation[J].Journal of Materials Design and Applications,2015,229(1):51-63.
    [12] 习年生,于志成,陶春虎.纤维增强复合材料的损伤特征及失效分析方法[J].航空材料学报,2000,20(2):55-63.XI Niansheng,YU Zhicheng,TAO Chunhu.Damage characterization and failure analysis in fiber reinforced composites[J].Journal of Aeronautical Materials,2000,20(2):55-63.(in Chinese)
    [13] Andrews E W, Moussa N A.Failure mode maps for composite sandwich panels subjected to air blast loading[J].International Journal of Impact Engineering,2009,36(3):418-425.
    [14] Knops M.Analysis of failure in fiber polymer laminates[M].Beijing:China Machine Press,2014.
    [15] Avila A F.Integrated micro/macro approach for laminate composite analysis:applications to turbine blades[J].AIAA Journal,2000,38(10):1924-1930.
    [16] 张国庆,王成焘,徐滨士.几种疲劳寿命预测方法的探讨及评价[J].机械强度,2011,33(3):469-474.ZHANG Guoqing,WANG Chengchou,XU Binshi.On assessment of several fatigue life prediction methods[J].Journal of Mechanical Strength,2011,33(3):469-474.(in Chinese)
    [17] SHANG Deguang,WANG Dakang,LI Ming,et al.Local stress-strain field intensity approach to fatigue life prediction under random cyclic loading[J].International Journal of Fatigue,2001,23(10):903-910.
    [18] 舒陶.局部应力应变Neuber法与有限元求法的比较[J].弹箭与制导学报,2009,29(1):267-269.SHU Tao.Comparison of Neuber rule and FEM for local stress-strain[J].Journal of Projectiles,Rockets,Missiles and Guidance,2009,29(1):267-269.(in Chinese)
    [19] 吴富强,姚卫星.一种新的材料疲劳寿命曲线模型[J].中国机械工程,2008,19(13):1634-1637.WU Fuqiang,YAO Weixing.A new model of the fatigue life curve of materials[J].China Mechanical Engineering,2008,19(13):1634-1637.(in Chinese)
    [20] 石炜,温卫东,崔海涛.榫连接结构微动疲劳寿命研究[J].航空动力学报,2014,29(1):104-110.SHI Wei,WEN Weidong,CUI Haitao.Research on fretting fatigue life of dovetail joints[J].Journal of Aerospace power,2014,29(1):104-110.(in Chinese)
    [21] 郑帮涛,马永.基于局部应力应变Neuber法的舵板寿命分析[J].舰船科学技术,2014,36(12):23-28.ZHENG Bangtao,MA Yong.Analysis of the helm fatigue-life based on local stress-strain Neuber rule[J].Ship Science and Technology,2014,36(12):23-28.(in Chinese)
    [22] 靳焕章,刘建,苟华忠.某系列发动机涡轮轴技术寿命研究[J].燃气涡轮试验与研究,2002,15(4):21-24.JIN Huanzhang,LIU Jian,GOU Huazhong.A study on turbine shaft technical life of an aero engine series[J].Gas Turbine Experiment and Research,2002,15(4):21-24.(in Chinese)
    [23] 于慧臣,吴学仁.航空发动机设计用材料数据手册:第4册[M].北京:航空工业出版社,2010.
    [24] 陶春虎,钟培道,王仁智,等.航空发动机转动部件的失效与预防[M].北京:国防工业出版社,2000.
  • 加载中
计量
  • 文章访问数:  992
  • HTML浏览量:  6
  • PDF量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-24
  • 刊出日期:  2017-04-28

目录

    /

    返回文章
    返回