留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Busemann压升规律的可控消波内转基准流场设计

何家祥 金东海

何家祥, 金东海. 基于Busemann压升规律的可控消波内转基准流场设计[J]. 航空动力学报, 2017, 32(5): 1168-1175. doi: 10.13224/j.cnki.jasp.2017.05.018
引用本文: 何家祥, 金东海. 基于Busemann压升规律的可控消波内转基准流场设计[J]. 航空动力学报, 2017, 32(5): 1168-1175. doi: 10.13224/j.cnki.jasp.2017.05.018
Busemann pressure rise distribution based design of inward turning basic flowfield with controlled and cancelled shock waves[J]. Journal of Aerospace Power, 2017, 32(5): 1168-1175. doi: 10.13224/j.cnki.jasp.2017.05.018
Citation: Busemann pressure rise distribution based design of inward turning basic flowfield with controlled and cancelled shock waves[J]. Journal of Aerospace Power, 2017, 32(5): 1168-1175. doi: 10.13224/j.cnki.jasp.2017.05.018

基于Busemann压升规律的可控消波内转基准流场设计

doi: 10.13224/j.cnki.jasp.2017.05.018
基金项目: 国家自然科学基金(51006005,51236001); 北京市自然科学基金(3151002)

Busemann pressure rise distribution based design of inward turning basic flowfield with controlled and cancelled shock waves

  • 摘要: 通过将经典Busemann设计方法和特征线反设计方法相结合,实现了对基准Busemann流场的气动截短,构建了一种具有基准Busemann流场截短压升规律的可控消波内转基准流场.通过数值模拟对可控消波内转基准流场及其追踪得到的“糖勺”型进气道进行了无黏验证分析.结果表明:特征线和CFD计算结果相吻合,可控消波内转基准流场设计合理可行.该基准流场继承了Busemann设计方法的高效压缩特性,且反射激波得到有效控制,基本实现消波,性能优于传统的截短Busemann流场.在设计点马赫数为7条件下,喉部截面参数均匀,增压比为18.32,总压恢复系数为0.878,压缩效率为0.936,隔离段内几乎无损失,出口气流匀直,气流角均在±0.4°以内.流线追踪得到的“糖勺”型进气道出口形状更加饱满,流动特征与可控消波内转基准流场基本一致.

     

  • [1] Curran E T,Murthy S N B.Scramjet propulsion,progress in astronautics and aeronautics[M].Reston,US:AIAA,2001.
    [2] Kothari A P,Tarpley C,Mclaughlin T A,et al.Hypersonic vehicle design using inward turning flowfields[R].AIAA 96-2552,1996.
    [3] Mlder S,Szpiro E J.Busemann inlet for hypersonic speeds[J].Journal of Spacecraft and Rockets,1966,3(8):1303-1304.
    [4] Smart M K.Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition[J].Journal of Propulsion and Power,2001,17(2):276-283.
    [5] 尤延铖,梁德旺.内乘波式进气道内收缩基本流场研究[J].空气动力学学报,2008,26(2):203-207.YOU Yancheng,LIANG Dewang.Investigation of internal compression flowfield for internal waverider-derived inlet[J].Acta Aerodynamica Sinica,2008,26(2):203-207.(in Chinese)
    [6] 南向军,张堃元,金志光,等.压升规律可控的高超声速内收缩进气道设计[J].航空动力学报,2011,26(3):518-523.NAN Xiangjun,ZHANG Kunyuan,JIN Zhiguang,et al.Investigation on hypersonic inward turning inlets with controlled pressure gradient[J].Journal of Aerospace Power,2011,26(3):518-523.(in Chinese)
    [7] 李永洲,张堃元,南向军.基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J].航空动力学报,2012,27(11):2484-2491.LI Yongzhou,ZHANG Kunyuan,NAN Xiangjun.Design concept of controllable Mach number distribution hypersonic inward turning inlets[J].Journal of Aerospace Power,2012,27(11):2484-2491.(in Chinese)
    [8] Mlder S.Internal,axisymmetric,conical flow[J].AIAA Journal,1967,5(7):1252-1255.
    [9] Van Wie D,Molder S.Applications of Busemann inlet designs for flight at hypersonic speeds[R].AIAA 92-1210,1992.
    [10] Billig F S,Baurle R A,Tam C J,et al.Design and analysis of streamline traced hypersonic inlets[J].AIAA 99-4974,1999.
    [11] Tarn C J,Baurle R A.Inviscid CFD analysis of streamline traced hypersonic inlets at off-design conditions[R].AIAA-2001-0675,2001.
    [12] 孙波,张堃元.Busemann 进气道起动问题初步研究[J].推进技术,2006,27(2):128-131.SUN Bo,ZHANG Kunyuan.Preliminary investigation on Busemann inlet starting characteristics[J].Journal of Propulsion Technology,2006,27(2):128-131.(in Chinese)
    [13] OBrien T F,Colville J R.Analytical computation of leading-edge truncation effects on inviscid Busemann-inlet performance[J].Journal of Propulsion and Power,2008,24(4):655-661.
    [14] Ogawa H,Mlder S,Boyce R.Effects of leading-edge truncation and stunting on drag and efficiency of Busemann intakes for axisymmetric scramjet engines[J].Journal of Fluid Science and Technology,2013,8(2):186-199.
    [15] Flock A K,Gülhan A.Viscous effects and truncation effects in axisymmetric Busemann scramjet intakes[R].AIAA-2015-0108,2015.
    [16] 南向军,张堃元.采用新型基准流场的高超声速内收缩进气道性能分析[J].宇航学报,2012,33(2):254-259.NAN Xiangjun,ZHANG Kunyuan.Analysis of hypersonic inward turning inlets with innovative axisymmetric basic flowfield[J].Journal of Astronautics,2012,33(2):254-259.(in Chinese)
    [17] 李永洲,张堃元,朱伟,等.双弯曲入射激波的可控中心体内收缩基准流场设计[J].航空动力学报,2015,30(3):563-570.LI Yongzhou,ZHANG Kunyuan,ZHU Wei,et al.Design for inward turning basic flowfield with controlled center body and two incident curved shock waves[J].Journal of Aerospace Power,2015,30(3):563-570.(in Chinese)
    [18] 卫锋,贺旭照,贺元元,等.三维内转式进气道双激波基准流场的设计方法[J].推进技术,2015,36(3):358-364.
    WEI Feng,HE Xuzhao,HE Yuanyuan,et al.Design method of dual-shock wave basic flow-field for inward turning inlet[J].Journal of Propulsion Technology,2015,36(3):358-364.(in Chinese)
  • 加载中
计量
  • 文章访问数:  820
  • HTML浏览量:  1
  • PDF量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-25
  • 刊出日期:  2017-05-28

目录

    /

    返回文章
    返回