留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HTPB推进剂的低温疲劳特性

童心 王永平 许进升 职世君 陈雄 郑亚

童心, 王永平, 许进升, 职世君, 陈雄, 郑亚. HTPB推进剂的低温疲劳特性[J]. 航空动力学报, 2017, 32(5): 1234-1240. doi: 10.13224/j.cnki.jasp.2017.05.025
引用本文: 童心, 王永平, 许进升, 职世君, 陈雄, 郑亚. HTPB推进剂的低温疲劳特性[J]. 航空动力学报, 2017, 32(5): 1234-1240. doi: 10.13224/j.cnki.jasp.2017.05.025
Fatigue properties of HTPB propellant at low temperature[J]. Journal of Aerospace Power, 2017, 32(5): 1234-1240. doi: 10.13224/j.cnki.jasp.2017.05.025
Citation: Fatigue properties of HTPB propellant at low temperature[J]. Journal of Aerospace Power, 2017, 32(5): 1234-1240. doi: 10.13224/j.cnki.jasp.2017.05.025

HTPB推进剂的低温疲劳特性

doi: 10.13224/j.cnki.jasp.2017.05.025
基金项目: 国家自然科学基金(U1404106);江苏省自然科学基金(BK20140772);中央高校基本科研业务费专项资金(30915011301)

Fatigue properties of HTPB propellant at low temperature

  • 摘要: 为探究端羟基聚丁二烯(HTPB)推进剂在低温下的疲劳特性,结合空空导弹在使用中的实际情况设计了包含不同应变幅值和加载频率的高周疲劳实验.实验在动态热机械分析仪上进行,温度保持为-50℃,加载频率设定为50,100,150Hz.为了考察低温下HTPB推进剂微小预变形对疲劳特性的影响,在动力循环加载前进行了准静态加载.疲劳实验后对试件实施单轴恒速拉伸,以获取疲劳后推进剂的力学参数.结果表明:在其他条件不变的情况下,疲劳应变幅值和加载频率越大,材料力学性能劣化程度越大,所累积的疲劳损伤量越大.初始阶段的准静态加载对推进剂疲劳特性起消极影响,低温高频下推进剂的疲劳损伤演化呈现出非线性,随着疲劳次数的增加,疲劳损伤增速由快变缓.

     

  • [1] 邢耀国,曲凯,许俊松,等.舰船摇摆条件下固体火箭发动机舰载寿命预估[J].推进技术,2011,32(1):32-35.XING Yaoguo,QU Kai,XU Junsong,et al.Life prediction of shipborne solid rocket motor under the ship swing motion[J].Journal of Propulsion Technology,2011,32(1):32-35.(in Chinese)
    [2] 曲凯,邢耀国,张旭东.摇摆载荷作用下舰载固体火箭发动机药柱疲劳损伤[J].航空动力学报,2011,26(11):2636-2640.QU Kai,XING Yaoguo,ZHANG Xudong.Fatigue damage of ship borne solid rocket motor propellant under swing loading[J].Journal of Aerospace Power,2011,26(11):2636-2640.(in Chinese)
    [3] 高艳宾,许进升,陈雄,等.应变控制下NEPE推进剂非线性疲劳损伤[J].航空动力学报,2015,30(6):1486-1491.GAO Yanbin,XU Jinsheng,CHEN Xiong,et al.Nonlinear fatigue damage of nitrate ester plasticized polyether propellant for strain-control[J].Journal of Aerospace Power,2015,30(6):1486-1491.(in Chinese)
    [4] 邓斌,董可海,谢燕.基于能量耗散的药柱粘弹性累积损伤[J].国防科技大学学报,2013,35(1):24-27.DENG Bin,DONG Kehai,XIE Yan.Viscoelastic cumulative damage of solid propellant grain based on energy dissipation[J].Journal of National University of Defense Technology,2013,35(1):24-27.(in Chinese)
    [5] 高艳宾.NEPE推进剂疲劳损伤特性研究[D].南京:南京理工大学,2015.GAO Yanbin.Research on fatigue damage of NEPE propellant[D].Nanjing:Nanjing University of Science and Technology,2015.(in Chinese)
    [6] 张艳辉,史明丽.空空导弹工作温度分析[J].装备环境工程,2015,12(2):99-103.ZHANG Yanhui,SHI Mingli.Analysis on operating temperature for air-to-air missiles[J].Equipment Environmental Engineering,2015,12(2):99-103.(in Chinese)
    [7] DeLuca L T,Galfetti L,Maggi F,et al.Characterization of HTPB-based solid fuel formulations:performance,mechanical properties,and pollution[J].Acta Astronautica,2013,92(2):150-162.
    [8] 吴旷怀,杨国良,张肖宁.考虑松弛的沥青混合料疲劳损伤累计模型研究[J].深圳大学学报(理工版),2008,25(4):345-350.WU Kuanghuai,YANG Guoliang,ZHANG Xiaoning.A fatigue damage model of asphalt mixture considering stress relaxation[J].Journal of Shenzhen University (Science and Technology),2008,25(4):345-350.(in Chinese)
    [9] Fekete B.New energy-based low cycle fatigue model for reactor steels[J].Materials and Design,2015,79:42-52.
    [10] 高艳宾,陈雄,许进升,等.NEPE 推进剂动态力学特性分析[J].推进技术,2015,36(9):1410-1415.GAO Yanbin,CHEN Xiong,XU Jinsheng,et al.Dynamic mechanical properties analysis of NEPE propellant[J].Journal of Propulsion Technology,2015,36(9):1410-1415.(in Chinese)
    [11] 常武军,鞠玉涛,王蓬勃.HTPB 推进剂脱湿与力学性能的相关性研究[J].兵工学报,2012,33(3):261-266.CHANG Wujun,J Yutao,WANG Pengbo.Research on correlation between dewetting and mechanical property of HTPB propellant[J].Acta Armamentarii,2012,33(3):261-266.(in Chinese)
    [12] 孟红磊,赵秀超,鞠玉涛,等.基于累积损伤的双基推进剂强度准则及实验[J].推进技术,2011,32(1):109-112.MENG Honglei,ZHAO Xiuchao,J Yutao,et al.Strength criterion based on accumulative damage for double-base propellant and experiment[J].Journal of Propulsion Technology,2011,32(1):109-112.(in Chinese)
    [13] Guo S,Zhou Y,Zhang H,et al.Thermographic analysis of the fatigue heating process for AZ31B magnesium alloy[J].Materials and Design,2015,65:1172-1180.
    [14] 王玉峰,李高春,刘著卿,等.应变率和加载方式对 HTPB 推进剂力学性能及耗散特性的影响[J].含能材料,2010,18(4):377-382.WANG Yufeng,LI Gaochun,LIU Zhuqing,et al.Effect of strain rate and loading on mechanical properties and dissipated energy for HTPB propellant[J].Chinese Journal of Energetic Materials,2010,18(4):377-382.(in Chinese)
    [15] Taylor G I,Quinney H.The latent energy remaining in a metal after cold working[J].Proceedings of the Royal Society of London:Series A,1934,143(849):307-326.
    [16] Knysh P,Korkolis Y P.Determination of the fraction of plastic work converted into heat in metals[J].Mechanics of Materials,2015,86:71-80.
    [17] TONG Xin,CHEN Xiong,XU Jinsheng,et al.Excitation of thermal dissipation of solid propellants during the fatigue process[J].Materials and Design,2017,128:47-55.
    [18] 许进升.复合推进剂热粘弹性本构模型实验及数值仿真研究[D].南京:南京理工大学,2013.XU Jinsheng.Experimental and numerical research on thermo-viscoelastic constitutive model of composite propellant[D].Nanjing:Nanjing University of Science and Technology,2015.(in Chinese)
    [19] Liu R,Zhang Z J,Zhang P,et al.Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys:damage mechanisms and life prediction[J].Acta Materialia,2015,83:341-356.
  • 加载中
计量
  • 文章访问数:  838
  • HTML浏览量:  2
  • PDF量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-03
  • 刊出日期:  2017-05-28

目录

    /

    返回文章
    返回