留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢气/氧气/稀释气混合气高温高压下层流燃烧速度的测量

吕鑫 胡二江 彭成 孟鑫 黄佐华

吕鑫, 胡二江, 彭成, 孟鑫, 黄佐华. 氢气/氧气/稀释气混合气高温高压下层流燃烧速度的测量[J]. 航空动力学报, 2017, 32(7): 1599-1604. doi: 10.13224/j.cnki.jasp.2017.07.009
引用本文: 吕鑫, 胡二江, 彭成, 孟鑫, 黄佐华. 氢气/氧气/稀释气混合气高温高压下层流燃烧速度的测量[J]. 航空动力学报, 2017, 32(7): 1599-1604. doi: 10.13224/j.cnki.jasp.2017.07.009
Measurements on laminar burning velocities of hydrogen/oxygen/diluents at elevated pressure and temperature[J]. Journal of Aerospace Power, 2017, 32(7): 1599-1604. doi: 10.13224/j.cnki.jasp.2017.07.009
Citation: Measurements on laminar burning velocities of hydrogen/oxygen/diluents at elevated pressure and temperature[J]. Journal of Aerospace Power, 2017, 32(7): 1599-1604. doi: 10.13224/j.cnki.jasp.2017.07.009

氢气/氧气/稀释气混合气高温高压下层流燃烧速度的测量

doi: 10.13224/j.cnki.jasp.2017.07.009
基金项目: 国家自然科学基金(91441118)

Measurements on laminar burning velocities of hydrogen/oxygen/diluents at elevated pressure and temperature

  • 摘要: 利用定容燃烧弹和高速纹影摄像系统,研究了高温高压条件下,不同稀释气和稀释系数对氢气/氧气/稀释气混合气层流燃烧速度的影响,获得了当量比为0.6~4.0,初始压力为0.1~0.5MPa,稀释系数为4~8的氢气/氧气/稀释气混合气的层流燃烧速度,并对其进行了数值模拟。实验和模拟均发现,在当量比小于1.0和大于3.0的范围内,层流燃烧速度均随初始压力升高而降低。而在当量比为1.0~3.0范围内,层流燃烧速度随初始压力升高呈现非单调变化的规律。通过敏感性分析发现三体反应(R15)在氮气作为稀释气的时候是抑制反应,而在氩气和氦气作为稀释气时是促进反应,主要是由于各稀释气热物性不同引起的。在当量比为1.0~3.0范围内,层流燃烧速度随初始压力升高呈现的非单调变化主要是链分支反应R1和链终止反应R15相互竞争的结果。

     

  • [1] 刘万龙,刁鹏,王翀,等.小型气氢气氧火箭发动机试验系统设计研究[J].航空动力学报,2010,25(7):1646-1652.LIU Wanlong,DIAO Peng,WANG Chong,et al.Test system design for small H2 /O2 rocket engine[J].Journal of Aerospace Power,2010,25(7):1646-1652.(in Chinese)
    [2] 胡国新,王明磊,李艳红,等.过量空气系数对微细腔内氢气预混燃烧效率的影响[J].上海交通大学学报,2004,38(7):1177-1180.HU Guoxin,WANG Minglei,LI Yanhong,et al.Influence of hydrogen-air ratio oncombustion efficiency for microcombustor[J].Journal of Shanghai Jiao Tong University,2004,38(7):1177-1180.(in Chinese)
    [3] 刘娟,潘余,刘卫东,等.超燃冲压发动机双凹腔燃烧室氢气燃烧流场分析[J].航空动力学报,2009,24(11):2501-2505.LIU Juan,PAN Yu,LIU Weidong,et al.Analysis of the hydrogen combustion field in scramjet dual-cavity combustor[J].Journal of Aerospace Power,2009,24(11):2501-2505.(in Chinese)
    [4] WESTBROOK C K,DRYER F L.Chemical kinetic modeling of hydrocarbon combustion[J].Progress in Energy and Combustion Science,1984,10(1):1-57.
    [5] HU E,HUANG Z,HE J,et al.Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames[J].International Journal of Hydrogen Energy,2009,34(11):4876-4888.
    [6] TANG C,HE J,HUANG Z,et al.Measurements of laminar burning velocities and Markstein lengths of propane-hydrogen-air mixtures at elevated pressures and temperatures[J].International Journal of Hydrogen Energy,2008,33(23):7274-7285.
    [7] 谢永亮,王金华,张猛,等.CO2和H2O对合成气层流燃烧速度的影响[J].工程热物理学报,2014,35(6):1248-1251.XIE Yongliang,WANG Jinhua,ZHANG Meng,et al.Different effects of CO2 and H2O dilution on laminar burning velocities of syngas/air mixture[J].Journal of Engineering Thermophysics,2014,35(6):1248-1251.(in Chinese)
    [8] Zheng Z L,Liang Z L.Reduced chemical kinetic model of a gasoline surrogate fuel for HCCI combustion[J].Acta Physico-Chimica Sinica,2015,31(7):1265-1274.
    [9] 周鹏.柴油机燃烧机理及缸内燃烧过程仿真研究[D].哈尔滨:哈尔滨工程大学,2012.ZHOU Peng.Research of diesel engine combustion mechanism and combustion process in-cylinder simulation[D].Harbin:Harbin Engineering University,2012.(in Chinese)
    [10] 曾文,陈潇潇,刘静忱,等.一种航空煤油数值模拟替代燃料的化学反应简化机理[J].航空动力学报,2012,27(3):536-543.ZENG Wen,CHEN Xiaoxiao,LIU Jingchen,et al.Reduced chemical reaction mechanism of a surrogate fuel for kerosene[J].Journal of Aerospace Power,2012,27(3):536-543.(in Chinese)
    [11] TSE S D,ZHU D L,LAW C K.Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres[J].Proceedings of the Combustion Institute,2000,28(2):1793-1800.
    [12] BURKE M P,CHAOS M,DRYER F L,et al.Negative pressure dependence of mass burning rates of H2/CO/O2/diluent flames at low flame temperatures[J].Combustion and Flame,2010,157(4):618-631.
    [13] HUANG Z,YONG Z,KE Z,et al.Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures[J].Combustion and Flame,2006,146(1/2):302-311.
    [14] FRANKEL M L,SIVASHINSKY G I.On quenching of curved flames[J].Combustion Science and Technology,1984,40(5/6):257-268.
    [15] CHEN Z.On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames[J].Combustion and Flame,2011,158(2):291-300.
    [16] BURKE M P,CHAOS M,JU Y,et al.Comprehensive H2/O2 kinetic model for high-pressure combustion[J].International Journal of Chemical Kinetics,2012,44(7):444-474.
    [17] LI J,ZHAO Z,Andrei K,et al.An updated comprehensive kinetic model of hydrogen combustion[J].International Journal of Chemical Kinetics,2004,36(10):566-575.
    [18] 胡二江.天然气—氢气混合燃料结合EGR的发动机和预混层流燃烧研究[D].西安:西安交通大学,2010.HU Erjiang.Study on engine and premixed laminar combustion fueled withnatural gas-hydrogen blends combined with EGR[D].Xian:Xian Jiaotong University,2010.(in Chinese)
    [19] KUZNETSOV M,REDLINGER R,BREITUNG W,et al.Laminar burning velocities of hydrogen-oxygen-steam mixtures at elevated temperatures and pressures[J].Proceedings of the Combustion Institute,2011,33(1):895-903.
  • 加载中
计量
  • 文章访问数:  769
  • HTML浏览量:  2
  • PDF量:  550
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-24
  • 刊出日期:  2017-07-28

目录

    /

    返回文章
    返回