留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切削参数对弧齿锥齿轮齿面平均残余高度的影响

邓静 贾新杰 邓效忠

邓静, 贾新杰, 邓效忠. 切削参数对弧齿锥齿轮齿面平均残余高度的影响[J]. 航空动力学报, 2017, 32(7): 1690-1697. doi: 10.13224/j.cnki.jasp.2017.07.020
引用本文: 邓静, 贾新杰, 邓效忠. 切削参数对弧齿锥齿轮齿面平均残余高度的影响[J]. 航空动力学报, 2017, 32(7): 1690-1697. doi: 10.13224/j.cnki.jasp.2017.07.020
Effect of cutting parameters on average scallop height for tooth surface of spiral bevel gears[J]. Journal of Aerospace Power, 2017, 32(7): 1690-1697. doi: 10.13224/j.cnki.jasp.2017.07.020
Citation: Effect of cutting parameters on average scallop height for tooth surface of spiral bevel gears[J]. Journal of Aerospace Power, 2017, 32(7): 1690-1697. doi: 10.13224/j.cnki.jasp.2017.07.020

切削参数对弧齿锥齿轮齿面平均残余高度的影响

doi: 10.13224/j.cnki.jasp.2017.07.020
基金项目: 国家自然科学基金(51475141)

Effect of cutting parameters on average scallop height for tooth surface of spiral bevel gears

  • 摘要: 基于弧齿锥齿轮展成加工原理,推导了各数控(NC)轴运动表达式,研究刀盘转速、数控轴联动速度和单步插补角度等参数对齿面平均残留高度的影响规律,建立了两者之间的耦合关系,在此基础上完成了切齿验证试验。结果表明:在降低齿面平均残留高度方面,刀片旋转切削速度的改变影响很小,数控轴联动移动速度的影响略有增加,单步插补度数的影响最为显著,实验结果和理论分析结果一致,验证了本文理论的正确性。

     

  • [1] 吴福忠.基于包络面构建的等残留高度刀具路径规划[J].农业机械学报,2009,40(1):217-221.WU Fuzhong.Constant scallop height tool path planning by constructing envelope surface[J].Transactions of the Chinese Society for Agricultural Machinery,2009,40(1):217-221.(in Chinese)
    [2] 郝小忠,DUROOBI A A A,陈文亮,等.环形刀等残留高度多轴加工步距计算[J].南京航空航天大学学报,2012,44(4):538-542.HAO Xiaozhong,DUROOBI A A A,CHEN Wenliang,et al.Calculation of stepover based on constant scallop-height in multi-axis torus milling process[J].Journal of Nanjing University of Aeronautics and Astronautics,2012,44(4):538-542.(in Chinese)
    [3] 彭芳瑜,方正隆,吴警,等.基于点云的超精密铣削加工三维表面形貌仿真[J].华中科技大学学报(自然科学版),2012,40(8):1-6.PENG Fangyu,FANG Zhenglong,WU Jing,et al.Three-dimensional surface topography simulation of ultra precision milling based on point cloud[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2012,40(8):1-6.(in Chinese)
    [4] 梁鑫光,姚振强.基于动力学响应的球头刀五轴铣削表面形貌仿真[J].机械工程学报,2013,49(6):171-178.LIANG Xinguang,YAO Zhenqiang.Dynamic-based simulation for machined surface topography in 5-axis ball-end milling[J].Journal of Mechanical Engineering,2013,49(6):171-178.(in Chinese)
    [5] ANTONI W,MOHANNAD I D.Kernel based regression and genetic algorithms for estimating cutting conditions of surface roughness in end milling machining process[J].Expert Systems with Applications,2012,39(14):11634-11641.
    [6] PLAKHOTNIK D,LAUWERS B.Computing of the actual shape of removed material for five-axis flat-end milling[J].Computer-Aided Design,2012,44:1103-1114.
    [7] RAMESH S,KARUNAMOORTHY L,PALANIKUMAR K.Measurement and analysis of surface roughness in turning of aerospace titanium (GR5)[J].Measurement,2012,45(5):1266-1276.
    [8] ROUTARA B C,SAHOO A K,PARIDA A K,et al.Response surface methodology and genetic algorithm used to optimize the cutting condition for surface roughness parameters in CNC turning[J].Procedia Engineering,2012,38:1893-1904.
    [9] ZAIN A M,HARON H,SHARIF S.Prediction of surface roughness in the end milling machining using artificial neural network[J].Expert Systems with Applications,2010,37(2):1755-1768.
    [10] EDWARD M,LUKASZ N.Analysis and verification of surface roughness constitution model after machining process[J].Procedia Engineering,2012,39:395-404.
    [11] YUAN Entao,SHAO Bing.Tool-path generation of multi-axis machining for subdivision surface[J].AASRI Procedia,2012,3:60-65.
    [12] LHAN A,HARUN A.Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method[J].Measurement,2011,44(9):1697-1704.
    [13] LHAN A,MEHMET C.Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method[J].Expert Systems with Applications,2011,38(5):5826-5832.
    [14] 韩佳颖,王太勇,李清,等.螺旋锥齿轮滚切加工残留高度的精确计算[J].机械科学与技术,2012,31(1):83-86.HAN Jiaying,WANG Taiyong,LI Qing,et al.Accurate calculation for spiral bevel gear generated cutting scallop height[J].Mechanical Science and Technology for Aerospace Engineering,2012,31(1):83-86.(in Chinese)
    [15] 明兴祖,严宏志,陈书涵.多轴数控磨削螺旋锥齿轮的表面粗糙度研究[J].中国机械工程,2009,20(20):2470-2476.MING Xingzu,YAN Hongzhi,CHEN Shuhan.Research on surface roughness for multi-axis NC grinding of spiral bevel gear[J].China Mechanical Engineering,2009,20(20):2470-2476.(in Chinese)
    [16] 张华,邓效忠.四轴数控螺旋锥齿轮铣齿机变性法铣齿研究[J].中国机械工程,2007,18(14):1652-1655.ZHANG Hua,DENG Xiaozhong.Modified-roll method study on 4-axis CNC spiral bevel gear machine[J].China Mechanical Engineer,2007,18(14):1652-1655.(in Chinese)
    [17] LITVIN F L.Gear geometry and applied theory[M].Cambridge:Combridge University Press,2004.
    [18] 李天兴,邓效忠,李聚波,等.螺旋锥齿轮齿面误差分析与自动反馈修正[J].航空动力学报,2011,26(5):1194-1200.LI Tianxing,DENG Xiaozhong,LI Jubo,et al.Automatic feedback correction and deviation analysis for tooth surface of spiral bevel and hypoid gear[J].Journal of Aerospace Power,2011,26(5):1194-1200.(in Chinese)
  • 加载中
计量
  • 文章访问数:  651
  • HTML浏览量:  0
  • PDF量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-10
  • 刊出日期:  2017-07-28

目录

    /

    返回文章
    返回