留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的RP-3航空煤油模拟替代燃料

曾文 刘靖 张治博 马洪安 张静 刘爱虢

曾文, 刘靖, 张治博, 马洪安, 张静, 刘爱虢. 一种新的RP-3航空煤油模拟替代燃料[J]. 航空动力学报, 2017, 32(10): 2314-2320. doi: 10.13224/j.cnki.jasp.2017.10.002
引用本文: 曾文, 刘靖, 张治博, 马洪安, 张静, 刘爱虢. 一种新的RP-3航空煤油模拟替代燃料[J]. 航空动力学报, 2017, 32(10): 2314-2320. doi: 10.13224/j.cnki.jasp.2017.10.002
A new surrogate fuel of RP3 kerosene[J]. Journal of Aerospace Power, 2017, 32(10): 2314-2320. doi: 10.13224/j.cnki.jasp.2017.10.002
Citation: A new surrogate fuel of RP3 kerosene[J]. Journal of Aerospace Power, 2017, 32(10): 2314-2320. doi: 10.13224/j.cnki.jasp.2017.10.002

一种新的RP-3航空煤油模拟替代燃料

doi: 10.13224/j.cnki.jasp.2017.10.002
基金项目: 国家自然科学基金(51376133, 51506132); 预研基金(XXQTXX)

A new surrogate fuel of RP3 kerosene

  • 摘要: 为了遴选出符合RP-3航空煤油物理与化学特性的模拟替代燃料,综合分析了RP-3航空煤油的物理与化学特性。针对其物理与化学特性,确定了RP-3航空煤油模拟替代燃料的遴选指标(包括摩尔质量、氢碳比、十六烷值与低热值)。针对遴选指标,提出了由正癸烷、正十二烷、异十六烷、甲基环己烷及甲苯等五种组分组成的RP3航空煤油模拟替代燃料,并对该模拟替代燃料中各组分的摩尔分数进行了优化。同时,对比分析了不同温度下该模拟替代燃料与RP3航空煤油的密度与运动黏度。结果表明,当该模拟替代燃料中正癸烷、正十二烷、异十六烷、甲基环己烷及甲苯的摩尔分数分别为14%、10%、30%、36%与10%时,该模拟替代燃料的摩尔质量、氢碳比、十六烷值与低热值与RP3航空煤油的相应数据非常吻合。同时,不同温度下该模拟替代燃料的密度与运动黏度变化趋势与RP-3航空煤油吻合较好。

     

  • [1] RIESMEIR E,HONNET S,PETERS N.Flamelet modeling of pollutant formation in a gas turbine combustion chamber using detailed chemistry for a kerosene model fuel[J].Journal of Engineering for Gas Turbines and Power,2004,126(4):899-905.
    [2] 马洪安,解茂昭,曾文,等.航空发动机燃烧室燃烧过程与排放物生成的反应动力学数值模拟[J].航空动力学报,2013,28(2):297-306. MA Hongan,XIE Maozhao,ZENG Wen,et al.Reaction kinetic simulation of combustion process and emission formation in aeroengine combustor[J].Journal of Aerospace Power,2013,28(2):297-306.(in Chinese)
    [3] MASIOL M,HARRISON R M.Aircraft engine exhaust emissions and other airportrelated contributions to ambient air pollution:a review[J].Atmospheric Environment,2014,95(1):409-455.
    [4] SMOOKE M D.The computation of laminar flames[J].Proceedings of the Combustion Institute,2013,34(1):65-98.
    [5] DOOLEY S,WON S H,HEYNE J,et al.The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena[J].Combustion and Flame,2012,159(4):1444-1466.
    [6] MENSCH A,SANTORO R J,LITZINGER T A,et al.Sooting characteristics of surrogates for jet fuels[J].Combustion and Flame,2010,157(3):1097-1105.
    [7] DUBOIS T G,NIEH S.Selection and performance comparison of jet fuel surrogates for autothermal reforming[J].Fuel,2011,90(4):1439-1448.
    [8] PATTERSON P M,KYNE A G,POURKHASHANIAN M,et al.Combustion of kerosene in counterflow diffusion flames[J].Journal of Propulsion and Power,2000,16(3):453-460.
    [9] WEN Z,YUN S,THOMSON M J,et al.Modeling soot formation in turbulent kerosene/air jet diffusion flames[J].Combustion and Flame,2003,135(3):323-340.
    [10] WANG T S.Thermophysics characterization of kerosene combustion[J].Journal of Thermophysics and Heat Transfer,2001,15(2):140-146.
    [11] VIOLI A,YAN S,EDDINGS E G,et al.Experimental formulation and kinetic model for JP8 surrogate mixture[J].Combustion Science and Technology,2002,174(11/12):399-417.
    [12] 范学军,俞刚.大庆RP3航空煤油热物性分析[J].推进技术,2006,27(2):187-192. FAN Xuejun,YU Gang.Analysis of thermophysical properties of Daqing RP-3 aviation kerosene[J].Journal of Propulsion Technology,2006,27(2):187-192.(in Chinese)
    [13] 郑东,于维铭,钟北京.RP3航空煤油替代燃料及其化学反应动力学模型[J].物理化学学报,2015,31(4):636-642. ZHENG Dong,YU Weiming,ZHONG Beijing.RP3 aviation kerosene surrogate fuel and the chemical reaction kinetic model[J].Acta PhysicoChimica Sinica,2015,31(4):636-642.(in Chinese)
    [14] 徐佳琪,郭俊江,刘爱科,等.RP3替代燃料自点火燃烧机理构建及动力学模拟[J].物理化学学报,2015,31(4):643-652. XU Jiaqi,GUO Junjiang,LIU Aike,et al.Construction of autoignition mechanisms for the combustion of RP3 surrogate fuel and kinetics simulation[J].Acta PhysicoChimica Sinica,2015,31(4):643-652.(in Chinese)
    [15] 朱玉红,余彩香,李子木,等.航空燃料超临界热裂解过程中焦炭的形成[J].石油化工,2006,35(12):1151-1155. ZHU Yuhong,YU Caixiang,LI Zimu,et al.Formation of coke in thermal cracking of jet fuel under super critical conditions[J].Petrochemical Technology,2006,35(12):1151-1155.(in Chinese)
    [16] JIANG R P,LIU G Z,ZHANG X W,et al.Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels[J].Energy and Fuels,2013,27(5):2563-2577.
    [17] KIM D,MARTZ J,VIOLI A.A surrogate for emulating the physical and chemical properties of conventional jet fuel[J].Combustion and Flame,2014,161(6):1489-1498.
    [18] DOOLEY S,WON S H,CHAO M,et al.A jet fuel surrogate formulated by real fuel properties[J].Combustion and Flame,2010,157(12):2333-2339.
  • 加载中
计量
  • 文章访问数:  773
  • HTML浏览量:  9
  • PDF量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-28
  • 刊出日期:  2017-10-28

目录

    /

    返回文章
    返回