留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于急速混合管状火焰技术的丙烷富氧燃烧

彭维康 赵晓尧 初庆钊 石保禄 李军伟 王宁飞

彭维康, 赵晓尧, 初庆钊, 石保禄, 李军伟, 王宁飞. 基于急速混合管状火焰技术的丙烷富氧燃烧[J]. 航空动力学报, 2017, 32(11): 2629-2637. doi: 10.13224/j.cnki.jasp.2017.11.009
引用本文: 彭维康, 赵晓尧, 初庆钊, 石保禄, 李军伟, 王宁飞. 基于急速混合管状火焰技术的丙烷富氧燃烧[J]. 航空动力学报, 2017, 32(11): 2629-2637. doi: 10.13224/j.cnki.jasp.2017.11.009
Oxyfuel combustion of propane based on rapidly mixed tubular flame technology[J]. Journal of Aerospace Power, 2017, 32(11): 2629-2637. doi: 10.13224/j.cnki.jasp.2017.11.009
Citation: Oxyfuel combustion of propane based on rapidly mixed tubular flame technology[J]. Journal of Aerospace Power, 2017, 32(11): 2629-2637. doi: 10.13224/j.cnki.jasp.2017.11.009

基于急速混合管状火焰技术的丙烷富氧燃烧

doi: 10.13224/j.cnki.jasp.2017.11.009

Oxyfuel combustion of propane based on rapidly mixed tubular flame technology

  • 摘要: 采用燃料与氧化剂分别切向注入柱形燃烧室的急速混合管状火焰燃烧技术,开展了丙烷富氧燃烧实验研究,重点分析了火焰结构和燃烧稳定性随氧气摩尔分数xO2的变化规律。丙烷空气实验中,急速混合获得了与预混燃烧相近的均匀稳定层流火焰。以CO2为稀释剂,利用急速混合燃烧分析了不同xO2的火焰特性。结果表明:当xO2≤0.5时,在可燃范围内可获得均匀稳定的管状火焰;xO2=0.6,火焰结构不均匀但仍为稳定层流火焰;xO2增加至0.7时,仅在低当量比下获得了稳定管状火焰,当量比为1.0附近则出现了不稳定燃烧;随着xO2进一步增加,不稳定燃烧范围扩大。实验测量了xO2≤0.4的丙烷可燃界限,相同xO2下N2为稀释剂的可燃范围比CO2的大;且在xO2低至0.125时仍能燃烧,而CO2为稀释剂时此值为0.18。

     

  • [1] 北京市环境保护局、北京市技术监督局.DB11/8472011 固定式燃气轮机大气污染物排放标准[S].北京:中国标准出版社,2011:1-5.
    [2] FOUST M,THOMSEN D,STICKLES R,et all.Development of the GE aviation low emissions TAPS Combustor for NEXT generation aircraft engines[J].AIAA-2012-0936,2012.
    [3] 张弛,于博文,杨谦,等.弱旋流喷嘴的污染排放和燃烧稳定性分析[J].航空动力学报,2015,30(11):2575-2583.ZHANG Chi,YU Bowen,YANG Qian,et all.Analysis of lowswirl injector emissions and combustion stabilization.Journal of Aerospace Power,2015,30(11):2575-2583.(in Chinese)
    [4] Ernest Orlando Lawrence Berkeley National Laboratory.NERSC 20082009 annal report[R].Iawrence Berkeley National Laboratory,LBNL-3476E,2010.
    [5] KUTNE P,KAPADIA B K,MEIER W,et al.Experimental analysis of the combustion behaviour of oxyfuel flames in a gas turbine model combustor[J].Proceedings of the Combustion Institute,2011,33(2):3383-3390.
    [6] WALL T F.Combustion processes for carbon capture[J].Proceedings of the Combustion Institute,2007,31(6):31-47.
    [7] SUNDKVIST S G,DAHLQUIST A,JANCZEWSKI J,et al.Concept for a combustion system in oxyfuel gas turbine combined cycles[J].Journal of Engineering for Gas Turbines and Power,2013,136(10):101513.1-101513.12.
    [8] 徐采松,胡砾元,罗永浩.旋流燃烧室内分级进风对燃烧污染物生成的影响[J].动力工程学报,2009,29(5):445-450.XU Caisong,HU Liyuan,LUO Yonghao,et al.Effects of staged air injection on combustion pollutant formation in a swirl combustor[J].Journal of Power Engineering,2009,29(5):445-450.(in Chinese)
    [9] SHEN D,MOST J M,JOULAIN P,et al.The effect of initial conditions for swirl turbulent diffusion flame with a straightexit burner[J].Combustion Science and Technology,2007,100(1):203-224.
    [10] BUHRE B J P,ELLIOTT L K,SHENG C D,et al.Oxyfuel combustion technology for coalfired power generation[J].Progress in Energy and Combustion Science,2005,31(4):283-307.
    [11] CHEN L,YONG S Z,GHONIEM A F.Oxyfuel combustion of pulverized coal:characterization,fundamentals,stabilization and CFD modeling[J].Fuel and Energy Abstracts,2012,38(2):14-25.
    [12] SCHELE J V.Use of direct flame impingement oxyfuel[J].Ironmaking and Steelmaking,2009,36(7):487-490.
    [13] VON SCHELE J.Oxyfuel combustion in the steel industry:energy efficiency and decrease of CO2 emissions[J].Energy Efficiency ,2010,3:83-102.
    [14] 刘志付,赵恩录,张文玲,等. 玻璃熔窑全氧燃烧技术的开发[J].玻璃,2008,34(2):14-16.LIU Zhifu,ZHAO Enlu,ZHANG Wenling,et al. Development of pure oxygen combustion technology in glass furnace[J].Glass,2008,34(2):83-102. (in Chinese)
    [15] SEEPANA S,JAYANTI S.Experimental studies of flame extinction in a swirlstabilized oxyfuel burner[J].Fuel,2012,93(5):75-81.
    [16] SHI B L,JIE H,ISHIZUKA S.Carbon dioxide diluted methane/oxygen combustion in a rapidly mixed tubular flame burner[J].Combustion and Flame,2015,162(2):420-430.
    [17] LIU C Y,CHEN G,SIPCZ N,et al.Characteristics of oxyfuel combustion in gas turbines[J].Applied Energy,2012,89(1):387-394.
    [18] AMATO A,HUDAK B,DSOUZA P,et al.Measurements and analysis of CO and O2 emissions in CH4/CO2/O2 flames[J].Proceedings of the Combustion Institute,2011,33(2):3399-3405.
    [19] KUTNE P,KAPADIA B K,MEIER W,et al.Experimental analysis of the combustion behaviour of oxyfuel flames in a gas turbine model combustor[J].Proceedings of the Combustion Institute,2011,33(2):3383-3390.
    [20] ISHIZUKA S,MOTODAMARI T,SHIMOKURI D.Rapidly mixed combustion in a tubular flame burner[J].Proceedings of the Combustion Institute,2007,31(1):1085-1092.
    [21] ISHIZUKA S.On the behavior of premixed flames in a rotating flow field:establishment of tubular flames[J].Symposium on Combustion,1985,20(1):287-294.
    [22] ISHIZUKA S.Characteristics of tubular flames[J].Progress in Energy and Combustion Science,1993,19(3):187-226.
    [23] ISHIZUKA S,DUNNRANKIN D,PITZ R W,et al.Tubular combustion[M].New York:Momentum Press,2013.
    [24] SHI B L,SHIMOKURI D,ISHIZUKA S.Reexamination on methane/oxygen combustion in a rapidly mixed type tubular flame burner[J].Combustion and Flame,2014,161(5):1310-1325.
    [25] SYRED N,BER J M.Combustion in swirling flows:a review[J].Combustion and Flame,1974,23(2):143-201.
    [26] MILLER J A,BOWMAN C T.Mechanism and modeling of nitrogen chemistry in combustion[J].Progress in Energy and Combustion Science,1989,15(4):287-338.
    [27] LIU F,GUO H,SMALLWOOD G J.The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames[J].Combustion and Flame,2003,133(4):495-497.
    [28] METCALFE W K,BURKE S M,AHMED S S,et al.A hierarchical and comparative kinetic modeling study of C1C2 hydrocarbon and oxygenated fuels[J].International Journal of Chemical Kinetics,2013,45(10):638-675.
    [29] Reaction Design Incorporation. CHEMKIN PRO Release 15101[R].San Diego,CA:Reaction Design Incorporation,2010.
    [30] METGHALCHI M,KECK J C.Laminar burning velocity of propaneair mixtures at high temperature and pressure[J].Combustion and Flame,1980,38(2):143-154.
    [31] SHIMOKURI D,SHIRAGA Y,ISHII K,et al.An experimental study on the high frequency oscillatory combustion in tubular flame burners[J].Combustion and Flame,2014,161(8):2025-2037.
  • 加载中
计量
  • 文章访问数:  910
  • HTML浏览量:  7
  • PDF量:  822
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-21
  • 刊出日期:  2017-11-28

目录

    /

    返回文章
    返回