留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型平板回路热管蒸发器内传热与流动的三维数值模拟

朱旭明 钟权 汪舟杰 黄晓明

朱旭明, 钟权, 汪舟杰, 黄晓明. 小型平板回路热管蒸发器内传热与流动的三维数值模拟[J]. 航空动力学报, 2017, 32(11): 2646-2652. doi: 10.13224/j.cnki.jasp.2017.11.011
引用本文: 朱旭明, 钟权, 汪舟杰, 黄晓明. 小型平板回路热管蒸发器内传热与流动的三维数值模拟[J]. 航空动力学报, 2017, 32(11): 2646-2652. doi: 10.13224/j.cnki.jasp.2017.11.011
Threedimensional numerical simulation for heat and mass transfer of the evaporator in a flat miniature loop heat pipe[J]. Journal of Aerospace Power, 2017, 32(11): 2646-2652. doi: 10.13224/j.cnki.jasp.2017.11.011
Citation: Threedimensional numerical simulation for heat and mass transfer of the evaporator in a flat miniature loop heat pipe[J]. Journal of Aerospace Power, 2017, 32(11): 2646-2652. doi: 10.13224/j.cnki.jasp.2017.11.011

小型平板回路热管蒸发器内传热与流动的三维数值模拟

doi: 10.13224/j.cnki.jasp.2017.11.011
基金项目: 国家自然科学基金(51576077)

Threedimensional numerical simulation for heat and mass transfer of the evaporator in a flat miniature loop heat pipe

  • 摘要: 针对小型平板回路热管蒸发器内的流动与传热,建立了多区域耦合的数学物理模型,并应用FLUENT软件进行了三维数值模拟。结果表明:蒸发器传热特性在不同热负荷下呈现出较大的差异,其温度分布不仅取决于热负荷,更依赖于毛细芯表面发生的两种传热机制,即毛细蒸发和热传导。相比高热负荷(Q=120W)和低热负荷(Q=40W),中等热负荷(Q=80W)下蒸发器各个部位的温度均较低。三种不同热负荷下,毛细芯反向导热均大于侧壁漏热,补偿腔内与毛细芯相邻处易出现高温区。冷凝回流液在补偿腔内的流动形成两个涡,这种流动特点有利于降低毛细芯的温度。当热负荷与系统冷凝能力匹配时,整个系统流动与传热特性最优。

     

  • [1] LI J,WANG D,PETERSON G P.Experimental studies on a high performance compact loop heat pipe with a square flat evaporator[J].Applied Thermal Engineering,2010,30(6/7):741-752.
    [2] JOUNG W,YU T,LEE J.Experimental study on the operating characteristics of a flat bifacial evaporator loop heat pipe[J].International Journal of Heat and Mass Transfer,2010,53(1):276-285.
    [3] CELATA G P,CUMO M,FURRER M.Experimental tests of a stainless steel loop heat pipe with flat evaporator[J].Experimental Thermal and Fluid Science,2010,34(7):866-878.
    [4] ZIMBECK W,SLAVIK G,CENNAMO J,et al.Loop heat pipe technology for cooling computer servers[C]∥Proceedings of 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.Orlando,US:IEEE,2008:19-25.
    [5] LIU Z C,LIU W,NAKAYAMA A.Flow and heat transfer analysis in porous wick of CPL evaporator based on field synergy principle[J].Heat and Mass Transfer,2007,43(12):1273-1281.
    [6] KHRUSTALEV D,FAGHRI A.Heat transfer in the inverted meniscus type evaporator at high heat fluxes[J].International Journal of Heat and Mass Transfer,1995,38(16):3091-3101.
    [7] FIGUS C,LE BRAY Y,BORIES S,et al.Heat and mass transfer with phase change in aporous structure partially heated:continuum model and pore network simulations[J].International Journal of Heat and Mass Transfer,1999,42(14):2557-2569.
    [8] ZHAO T S,LIAO Q.On capillarydriven flow and phasechange heat transfer in a porous structure heated by a finned surface:measurements and modeling[J].International Journal of Heat and Mass Transfer,2000,43(7):1141-1155.
    [9] LI J,PETERSON G P.3D heat transfer analysis in a loop heat pipe evaporator with a fully saturated wick[J].International Journal of Heat and Mass Transfer,2011,54(1):564-574.
    [10] CHERNYSHEVA M A,MAYDANIK Y F.3Dmodel for heat and mass transfer simulation in flat evaporator of copperwater loop heat pipe[J].Applied Thermal Engineering,2012,3334:124-134.
    [11] CHERNYSHEVA M A,MAYDANIK Y F.Simulation of thermal processes in a flat evaporator of a copperwater loop heat pipe under uniform and concentrated heating[J].International Journal of Heat and Mass Transfer,2012,55(25):7385-7397.
    [12] CHERNYSHEVA M A,PASTUKHOV V G,MAYDANIK Y F.Analysis of heat exchange in the compensation chamber of a loop heat pipe[J].Energy,2013,55(6):253-262.
    [13] BUFFONE C,SEFIANE K.Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores[J].International Journal of Multiphase Flow,2004,30(9):1071-1091.
    [14] 黄晓明,金鑫,王超,等.工质对毛细管内延展弯月面蒸发传热的影响[J].航空动力学报,2013,28(12):2703-2708.HUANG Xiaoming,JIN Xin,WANG Chao,et al.Effect of working fluid on heat transfer of evaporating extended meniscus in capillary channel[J].Journal of Aerospace Power,2013,28(12):2703-2708.(in Chinese)
    [15] 黄晓明,TARIK K.蒸发毛细弯液面热质传输特征及其稳定性分析[J].西安交通大学学报,2010,44(3):21-25.HUANG Xiaoming,TARIK K.Heat and mass transfer characteristics and stability of capillary evaporating meniscus[J].Journal of Xian Jiaotong University,2010,44(3):21-25.(in Chinese)
    [16] SIEDEL B,SARTRE V,LEFVRE F.Numerical investigation of the thermohydraulic behaviour of a complete loop heat pipe[J].Applied Thermal Engineering,2013,61(2):541-553.
    [17] MAREK R,STRAUB J.Analysis of the evaporation coefficient and the condensation coefficient of water[J].International Journal of Heat and Mass Transfer,2001,44(1):39-53.
    [18] 陈彬彬,刘伟,刘志春,等.平板式小型环路热管的实验研究[J].宇航学报,2011,32(4):953-958.CHEN Binbin,LIU Wei,LIU Zhichun,et al.Experimental study on miniature loop heat pipe with flatplate evaporator[J].Journal of Astronautics,2011,32(4):953-958.(in Chinese)
  • 加载中
计量
  • 文章访问数:  901
  • HTML浏览量:  3
  • PDF量:  685
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-31
  • 刊出日期:  2017-11-28

目录

    /

    返回文章
    返回