留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CFD和CSM耦合的通用静气弹分析方法

周强 李东风 陈刚 李跃明

周强, 李东风, 陈刚, 李跃明. 基于CFD和CSM耦合的通用静气弹分析方法[J]. 航空动力学报, 2018, 33(2): 355-363. doi: 10.13224/j.cnki.jasp.2018.02.013
引用本文: 周强, 李东风, 陈刚, 李跃明. 基于CFD和CSM耦合的通用静气弹分析方法[J]. 航空动力学报, 2018, 33(2): 355-363. doi: 10.13224/j.cnki.jasp.2018.02.013
General static aeroelasticity analysis method based on CFD/CSM coupling[J]. Journal of Aerospace Power, 2018, 33(2): 355-363. doi: 10.13224/j.cnki.jasp.2018.02.013
Citation: General static aeroelasticity analysis method based on CFD/CSM coupling[J]. Journal of Aerospace Power, 2018, 33(2): 355-363. doi: 10.13224/j.cnki.jasp.2018.02.013

基于CFD和CSM耦合的通用静气弹分析方法

doi: 10.13224/j.cnki.jasp.2018.02.013
基金项目: 国家自然科学基金(11272005,11472206,11371288,11511130053); 国家重点专项项目(MJ-2015-F-010)

General static aeroelasticity analysis method based on CFD/CSM coupling

  • 摘要: 提出了一种适用于有限元精细化建模的流固耦合插值点选择方法,通过RBF(径向基函数)方法实现流固耦合面的数据交换,实现了基于CFD/CSM(computational fluid dynamics/computational structural mechanics)耦合的通用非线性静气弹分析方法。以HIRENASD(high Reynolds number aero-structural dynamics)风洞试验模型为验证对象,数值结果很好地与风洞试验结构变形、气动压力分布吻合,验证了所发展非线性CFD/CSM耦合静气弹求解器的精度。详细研究了HIRENASD模型在大迎角(AOA)流动下的静气动弹性特性,以及该模型弹性变形对机翼气动特性影响规律。研究表明:HIRENASD弹性模型变形后其升力小于刚性模型;在小迎角范围内刚性、弹性模型升力差随迎角增大呈线性增长;当迎角大于4°后,升力差先减小后基本保持不变,呈非线性关系。

     

  • [1] KORSCH H,DAFNIS A,REIMERDES H G.Dynamic qualification of the HIRENASD elastic wing model[J].Aerospace Science and Technology,2009,13(2):130-138.
    [2] MAVRIPLIS D,YANG Z,LONG M.Results using NSU3D for the first aeroelastic prediction workshop[R].Texas:the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,2013.
    [3] THOMAS J P,DOWELL E H,HALL K C.Nonlinear inviscid aerodynamic effects on transonic divergence,flutter,and limit-cycle oscillations[J].AIAA Journal,2002,40(4):638-646.
    [4] 胡海岩,赵永辉,黄锐.飞机结构气动弹性分析与控制研究[J].力学学报,2016,48(1):1-27.HU Haiyan,ZHAO Yonghui,HUANG Rui.Studies on aeroelastic analysis and control of aircraft structures[J].Chinese Journal of Theoretical and Applied Mechanics,2016,48(1):1-27.(in Chinese)
    [5] PATIL M J,HODGES D H.On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings[J].Journal of Fluids and Structures,2004,19(7):905-915.
    [6] JAWORSKI J W,DOWELL E H.Comparison of theoretical structural models with experiment for a high-aspect-ratio aeroelastic wing[J].Journal of Aircraft,2009,46(2):708-713.
    [7] 安效民,徐敏.一种几何大变形下的非线性气动弹性求解方法[J].力学学报,2011,43(1):97-104.AN Xiaomin,XU Min.An improved geometrically nonlinear algorithm and its application for nonlinear aeroelasticity[J].Chinese Journal of Theoretical and Applied Mechanics,2011,43(1):97-104.(in Chinese)
    [8] KIM K S,LEE I,YOO J H,et al.Efficient numerical aeroelastic analysis of a high-aspect-ratio wing considering geometric nonlinearity[J].Journal of Aircraft,2012,47(1):338-343.
    [9] CHEN T,XU M,XIE L.Aeroelastic modeling using geometrically nonlinear solid-shell elements[J].AIAA Journal,2014,52(9):1980-1993.
    [10] GORDNIER R E,CHIMAKURTHI S K,CESNIK C E S,et al.High-fidelity aeroelastic computations of a flapping wing with spanwise flexibility[J].Journal of Fluids and Structures,2013,40(7):86-104.
    [11] ZUO Y T,GAO Z H,GANG C,et al.Efficient aero-structural design optimization:coupling based on reverse iteration of structural model[J].Science China Technological Sciences,2015,58(2):307-315.
    [12] DHINDSA H,LOVELADY J,NICHOLSON B,et al.Assessment of the ONERA/DLR numerical aeroelastics prediction capabilities on the HIRENASD configuration[R].Paris,France:International Forum on Aeroelasticity and Structural-Dynamics,2011.
    [13] MIAN H H,WANG G,YE Z Y.Numerical investigation of structural geometric nonlinearity effect in high-aspect-ratio wing using CFD/CSD coupled approach[J].Journal of Fluids and Structures,2014,49(8):186-201.
    [14] MIAN H H,WANG G,YE Z Y,et al.RBF interpolation with improved data reduction algorithm:a meshfree method for fluid-structure coupling and mesh deformation[R].Islamabad,Pakistan:International Bhurban Conference on Sciences and Applied Technologies,2014.
    [15] 聂雪媛,黄程德,杨国伟.基于CFD/CSD耦合的结构几何非线性静气动弹性数值方法研究[J].振动与冲击,2016,35(8):48-53.NIE Xueyuan,HUANG Chengde,YANG Guowei.Numerical analysis for aeroelastic with structural geometrical nonlinearity using CFD/CSD coupled method[J].Journal of Vibration and Shock,2016,35(8):48-53.(in Chinese)
    [16] 周强,陈刚,李跃明.考虑流固耦合效应的某飞行器力学性能分析[J].应用力学学报,2015,32(2):209-214.ZHOU Qiang,CHEN Gang,LI Yueming.Considering fluid-structure coupling effect of an aircraft mechanical properties analysis[J].Chinese Journal of Applied Mechanics,2015,32(2):209-214.(in Chinese)
    [17] REIMER L,BALLMANN J,BRAUN C,et al.Computational aeroelastic design and analysis of the HIRENASD wind tunnel wing model and tests[R].Stockholm,Sweden:International Forum on Aeroelasticity and Structural- Dynamics,2007.
    [18] HUA R H,ZHAO C X,YE Z Y,et al.Effect of elastic deformation on the trajectory of aerial separation[J].Aerospace Science and Technology,2015,45(2):128-139.
    [19] VAN LEER B.Towards the ultimate conservative difference scheme:Ⅴ a second-order sequel to Godunovs method[J].Journal of Computational Physics,1979,32(1):101-136.
    [20] SPALART P,ALLMARAS S.A one-equation turbulence model for aerodynamic flows[R].AIAA 92-0439,1992.
    [21] 王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [22] BOER A D,ZUIJLEN A H V,BIJL H.Review of coupling methods for non-matching meshes[J].Computer Methods in Applied Mechanics and Engineering,2007,196(8):1515-1525.
    [23] 苏波,钱若军,袁行飞,等.利用能量守恒和径向基函数插值的流固耦合界面数据传递方法[J].西安交通大学学报,2009,43(9):114-119.SU Bo,QIAN Ruojun,YUAN Xingfei,et al.Dataexchange method for fluid structure interaction based on energy conservation and interpolation algorithm adopting radial basis function[J].Journal of Xian Jiaotong University,2009,43(9):114-119.(in Chinese)
    [24] ZUO Y,CHEN G,LI Y.Efficient aeroelastic design optimization based on the discrete adjoint method[J].Transactions of the Japan Society for Aeronautical and Space Sciences,2014,57(6):343-351.
    [25] 黄礼铿,高正红,左英桃.一种快速稳健的并行多块结构动网格方法[J].计算力学学报,2012,29(3):363-367.HUANG Likeng,GAO Zhenghong,ZUO Yingtao.A fast and robust parallelizable moving mesh algorithm for multi-block structured grids[J].Chinese Journal of Computational Mechanics,2012,29(3):363-367.(in Chinese)
    [26] CHWALOWSKI P,HEEG J,WIESEMAN C D,et al.FUN3D analyses in support of the first aeroelastic prediction workshop[R].Texas:the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,2013.
    [27] REIMER L,BOUCKE A,BALLMANN J,et al.Computational analysis of high reynolds number aero-structural dynamics (HIRENASD) experiments[R].International Forum on Aeroelasticity and Structural Dynamics,IFASD-2009-2130,2009.
  • 加载中
计量
  • 文章访问数:  660
  • HTML浏览量:  1
  • PDF量:  533
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-18
  • 刊出日期:  2018-02-28

目录

    /

    返回文章
    返回