留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体激励控制激波与边界层干扰流动分离数值研究

王宇天 张百灵 李益文 肖良华

王宇天, 张百灵, 李益文, 肖良华. 等离子体激励控制激波与边界层干扰流动分离数值研究[J]. 航空动力学报, 2018, 33(2): 364-371. doi: 10.13224/j.cnki.jasp.2018.02.014
引用本文: 王宇天, 张百灵, 李益文, 肖良华. 等离子体激励控制激波与边界层干扰流动分离数值研究[J]. 航空动力学报, 2018, 33(2): 364-371. doi: 10.13224/j.cnki.jasp.2018.02.014
Numerical investigation for control of shock wave and boundary layer interactions flow separation with plasma actuation[J]. Journal of Aerospace Power, 2018, 33(2): 364-371. doi: 10.13224/j.cnki.jasp.2018.02.014
Citation: Numerical investigation for control of shock wave and boundary layer interactions flow separation with plasma actuation[J]. Journal of Aerospace Power, 2018, 33(2): 364-371. doi: 10.13224/j.cnki.jasp.2018.02.014

等离子体激励控制激波与边界层干扰流动分离数值研究

doi: 10.13224/j.cnki.jasp.2018.02.014
基金项目: 国家自然科学基金(11372352,51306207)

Numerical investigation for control of shock wave and boundary layer interactions flow separation with plasma actuation

  • 摘要: 针对高超声速进气道激波与边界层干扰流动分离控制问题,提出了一种低功率重频非定常激励方式,并基于雷诺平均Navier-Stokes(N-S)方程,从唯象学的角度出发,将等离子激励简化为功率密度源项,对比研究了定常与低功率重频非定常等离子体气动激励的作用机理与控制效果。结果表明:定常激励的能量沉积作用对于激波控制非常有效,并可诱导出斜激波,但是对于流动分离控制而言,其能量沉积显然过于强大,反而会使流动分离更加严重,无法满足控制要求;当采用低功率重频非定常激励方式时,对于不同功率密度的情况均存在最佳激励时长与频率,当功率密度为5.0×109W/m3时,最大射流速度可以达到895m/s,并且可以在一定程度上减弱激波与边界层干扰流动分离。

     

  • [1] GAITONDE D V.Progress in shock wave/boundary layer interactions[J].Progress in Aerospace Sciences,2015,72:80-99.
    [2] 赵慧勇,周瑜,倪鸿礼,等.高超声速进气道边界层强制转捩试验[J].实验流体力学,2012,26(1):1-6.ZHAO Huiyong,ZHOU Yu,NI Hongli,et al.Test of forced boundary-layer transition on hypersonic inlet[J].Journal of Experiments in Fluid Mechanics,2012,26(1):1-6.(in Chinese)
    [3] 解少飞,杨武兵,沈清.高超声速边界层转捩机理及应用的若干进展回顾[J].航空学报,2015,36(3):714-723.XIE Shaofei,YANG Wubing,SHEN Qing.Review of progresses in hypersonic boundary layer transition[J].Acta Aeronautica et Astronautica Sinica,2015,36(3):714-723.(in Chinese)
    [4] 苏纬仪,张堃元,金志光.一种抑制激波-边界层相互作用的新型无源被动控制[J].空气动力学报,2011,29(6):738-743.SU Weiyi,ZHANG Kunyuan,JIN Zhiguang.Investigation of a new-type passive control method on shock-wave/boundary layer interactions[J].Acta Aerodynamica Sinica,2011,29(6):738-743.(in Chinese)
    [5] 张悦,谭慧俊,张启帆,等.一种进气道内激波/边界层干扰控制的新方法及其流动机理[J].宇航学报,2012,33(2):265-274.ZHANG Yue,TAN Huijun,ZHANG Qifan,et al.A new nethod and its flow mechanism for control of shock/boundary layer interaction in hypersonic inlet[J].Journal of Astronautics,2012,33(2):265-274.(in Chinese)
    [6] NISHIHARA M,GAITONDE D,ADAMOVICH I V.Effect of nanosecond pulse discharges on oblique shock and shock wave-boundary layer interaction[R].AIAA-2013-0416,2013.
    [7] WEBB N,CLIFFORD C,SAMIMY M.Control of oblique shock wave/boundary layer interactions using plasma actuators[J].Experiments in Fluids,2013,54(6):1-13.
    [8] GREENE B R,CLEMENS N T,MICKA D.Control of shock boundary layer interaction using pulsed plasma jets[R].AIAA-2013-0405,2013.
    [9] KALRA C,ZAIDI S H,ALDERMAN B J,et al.Magnetically driven surface discharges for shock-wave induced boundary layer separation control[R].AIAA-2007-0222,2007.
    [10] KALRA C,ZAIDI S H,ALDERMAN B J,et al.Non-thermal control of shock-wave induced boundary layer separation using magneto-hydrodynamics[R].AIAA-2007-4138,2007.
    [11] KALRA C S,ZAIDI S H,SHNEIDER M N,et al.Shockwave induced turbulent boundary layer separation control with plasma actuators[R].AIAA-2009-1002,2009.
    [12] KALRA C,SHNEIDERY M N,MILES R B.Numerical study of shockwave induced boundary layer separation control using plasma actuators[R].AIAA-2008-1095,2008.
    [13] KALRA C S,ZAIDI S H,MILES R B,et al.Shockwave–turbulent boundary layer interaction control using magnetically driven surface discharges[J].Experiments in Fluids,2011,50(3):547-559.
    [14] 严红,王松.热激励在超声速进气道内对激波诱导的边界层分离的控制机理[J].空气动力学学报,2014,32(6):806-813.
    YAN Hong,WANG Song.Control of shock/boundary layer interaction in supersonic inlet using thermal excitation[J].Acta Aerodynamica Sinica,2014,32(6):806-813.(in Chinese)
    [15] YAN H.Near-surface discharge in supersonic inlet control[R].AIAA-2013-0530,2013.
    [16] 苏纬仪,陈立红,张新宇.MHD控制激波诱导边界层分离的机理[J].推进技术,2009,30(2):229-233.SU Weiyi,CHEN Lihong,ZHANG Xinyu.Investigation of magnetohydrodynamic control on boundary layer separation induced by shock wave[J].Journal of Propulsion Technology,2009,30(2):229-233.(in Chinese)
    [17] CAPITELLI M,COLONNA G,GORSE C,et al.Transport properties of high temperature air in local thermodynamic equilibrium[J].The European Physical Journal,2000,11(2):279-289.
    [18] SCHULEIN E.Skin-friction and heat flux measurements in shock/boundary-layer interaction flows[J].AIAA Journal,2006,44(8):1732-1741.
  • 加载中
计量
  • 文章访问数:  689
  • HTML浏览量:  11
  • PDF量:  548
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-05
  • 刊出日期:  2018-02-28

目录

    /

    返回文章
    返回