留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于不同高度的等离子体体积力唯像学模型

车学科 聂万胜 桂启山 周朋辉 陈庆亚 张立志 姜家文

车学科, 聂万胜, 桂启山, 周朋辉, 陈庆亚, 张立志, 姜家文. 适用于不同高度的等离子体体积力唯像学模型[J]. 航空动力学报, 2018, 33(4): 841-849. doi: 10.13224/j.cnki.jasp.2018.04.009
引用本文: 车学科, 聂万胜, 桂启山, 周朋辉, 陈庆亚, 张立志, 姜家文. 适用于不同高度的等离子体体积力唯像学模型[J]. 航空动力学报, 2018, 33(4): 841-849. doi: 10.13224/j.cnki.jasp.2018.04.009
Plasma body force phenomenological model for different altitudes[J]. Journal of Aerospace Power, 2018, 33(4): 841-849. doi: 10.13224/j.cnki.jasp.2018.04.009
Citation: Plasma body force phenomenological model for different altitudes[J]. Journal of Aerospace Power, 2018, 33(4): 841-849. doi: 10.13224/j.cnki.jasp.2018.04.009

适用于不同高度的等离子体体积力唯像学模型

doi: 10.13224/j.cnki.jasp.2018.04.009
基金项目: 国家自然科学基金(11205244)

Plasma body force phenomenological model for different altitudes

  • 摘要: 针对等离子体流动控制数值模拟中唯像学模型高度适应能力不足的问题,假设等离子体中离子数密度正比于放电光强,对101.3~1.5kPa气压下等离子体放电图片进行灰度处理,得到等离子体发光的相对光强、光强比即离子数密度随气压、激励电压的变化特点。结果表明:随着气压增大,从弥散放电逐渐转化为丝状放电,而光强比逐渐减小,可以使用大气压下的饱和总相对光强代替其他气压下的结果;提高激励电压,等离子体出现双侧放电,且放电光强增大,放电电荷与激励电压近似成线性关系。进一步通过理论推导建立了新的电荷分布边界条件,并拟合了多个气压和激励电压下等离子体发光的相对光强,然后选择其中两个典型工况进行数值模拟,将计算结果与相应气压下等离子体诱导射流激光粒子图像测量结果进行比较,对该模型进行了验证,表明该模型能够准确模拟飞行高度、激励电压对等离子体诱导射流的影响。

     

  • [1] MOREAU E.Airflow control by non-thermal plasma actuators[J].Journal Physics D:Applied Physics,2007,40(3):605-636.
    [2] 聂万胜,程钰锋,车学科.介质阻挡放电等离子体流动控制研究进展[J].力学进展,2012,42(6):722-734.NIE Wansheng,CHENG Yufeng,CHE Xueke.A review on dielectric barrier discharge plasma flow control[J].Advances in Mechanics,2012,42(6):722-734.(in Chinese)
    [3] WANG Jinjun,CHOI K,FENG Lihao,et al.Recent developments in DBD plasma flow control[J].Progress in Aerospace Sciences,2013,62(1):52-78.
    [4] ORLOV D M,CORKE T C.Numerical simulation of aerodynamic plasma actuator effects[R].AIAA-2005-1083,2005.
    [5] SHYY W,JAYARAMAN B,ANDERSSON A.Modeling of glow discharge-induced fluid dynamics[J].Journal of Applied Physics,2002,92(11):6434-6443.
    [6] LIU A B,ZHANG P F,YAN B,et al.Flow characteristics of synthetic jet induced by plasma actuator[J].AIAA Journal,2011,49(3):544-553.
    [7] 梁华,李应红,程邦勤,等.等离子体气动激励抑制翼型失速分离的仿真研究[J].航空动力学报,2008,23(5):777-783.LIANG Hua,LI Yinghong,CHENG Bangqin,et al.Numerical simulation on airfoil stall separation suppression by plasma aerodynamic actuation[J].Journal of Aerospace Power,2008,23(5):777-783.(in Chinese)
    [8] SUZEN Y B,HUANG P G.Simulations of flow separation control using plasma actuators[R].AIAA-2006-877,2006.
    [9] 宋科,杨旭东,乔志德.翼型动态失速DBD等离子体流动控制的数值模拟研究[J].航空计算技术,2010,40(3):5-8.SONG Ke,YANG Xudong,QIAO Zhide.Flow control of airfoil dynamic stall based on DBD plasma actuators[J].Aeronautical Computer Technique,2010,40(3):5-8.(in Chinese)
    [10] 李钢,黄卫兵,朱俊强,等.平板附面层等离子体流动控制的数值模拟[J].航空动力学报,2007,22(12):2073-2077.LI Gang,HUANG Weibing,ZHU Junqiang,et al.Numerical simulation of flat plate plasma flow control[J].Journal of Aerospace Power,2007,22(12):2073-2077.(in Chinese)
    [11] CHENG Yufeng,CHE Xueke,NIE Wansheng.Numerical study on propeller flow separation control by DBD plasma aerodynamic actuation[J].IEEE Transactions on Plasma Science,2013,41(4):892-898.
    [12] 李凡玉,李军,吴云,等.纳秒脉冲等离子体气动激励数值仿真[J].航空动力学报,2015,30(3):537-545.LI Fanyu,LI Jun,WU Yun,et al.Numerical simulation of nanosecond pulse plasma aerodynamic actuation[J].Journal of Aerospace Power,2015,30(3):537-545.(in Chinese)
    [13] CHE Xueke,SHAO Tao,NIE Wansheng,et al.Numerical simulation on a nanosecond-pulse surface dielectric barrier discharge actuator in near space[J].Journal of Physics D:Applied Physics,2012,45(14):145201.1-145201.14.
    [14] UNFER T,BOEUF J P,ROGIER F,et al.Multi-scale gas discharge simulations using asynchronous adaptive mesh refinement[J].Computer Physics Communications,2010,181(2):247-258.
    [15] 毛枚良,邓小刚,陈坚强.常气压辉光放电等离子体控制翼型失速的数值模拟研究[J].空气动力学学报,2008,26(3):334-338.MAO Meiliang,DENG Xiaogang,CHEN Jianqiang.Numerical simulation of flow control past a stalled air foil with OAUGDP[J].Acta Aerodynamica Sinica,2008,26(3):334-338.(in Chinese)
    [16] ORLOV D M,CORKE T C,PATEL M P.Electric circuit model for aerodynamic plasma actuator[R].AIAA-2006-1206,2006.
    [17] GREGORY J W,ENLOE C L,FONT G I,et al.Force production mechanisms of a dielectric-barrier discharge plasma actuator[R].AIAA-2007-0185,2007.
    [18] 车学科,聂万胜,丰松江,等.介质阻隔面放电的结构参数[J].高电压技术,2009,35(9):2213-2219.CHE Xueke,NIE Wansheng,FENG Songjiang,et al.Geometrical parameter study of dielectric barrier surface discharge[J].High Voltage Engineering,2009,35(9):2213-2219.(in Chinese)
    [19] 周朋辉,田希晖,车学科,等.不同压力下微秒脉冲表面介质阻挡放电流场实验[J].航空动力学报,2013,28(12):2691-2697.ZHOU Penghui,TIAN Xihui,CHE Xueke,et al.Experiment of airflow induced by microsecond pulse surface dielectric barrier discharge under pressure influences[J].Journal of Aerospace Power,2013,28(12):2691-2697.(in Chinese)
    [20] 于洋,邵涛,章程,等.单极性纳秒脉冲介质阻挡放电电荷传输特性实验分析[J].高电压技术,2011,37(6):1555-1562.YU Yang,SHAO Tao,ZHANG Cheng,et al.Experimental analysis on charges transported in dielectric barrier discharge using unipolar nanosecond-pulse generator[J].High Voltage Engineering,2011,37(6):1555-1562.(in Chinese)
  • 加载中
计量
  • 文章访问数:  831
  • HTML浏览量:  3
  • PDF量:  876
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-26
  • 刊出日期:  2018-04-28

目录

    /

    返回文章
    返回