留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维和二维电热除冰相变传热特性的参数影响分析

肖春华 于昆龙 桂业伟 唐乔乔

肖春华, 于昆龙, 桂业伟, 唐乔乔. 一维和二维电热除冰相变传热特性的参数影响分析[J]. 航空动力学报, 2018, 33(4): 882-893. doi: 10.13224/j.cnki.jasp.2018.04.014
引用本文: 肖春华, 于昆龙, 桂业伟, 唐乔乔. 一维和二维电热除冰相变传热特性的参数影响分析[J]. 航空动力学报, 2018, 33(4): 882-893. doi: 10.13224/j.cnki.jasp.2018.04.014
Analysis of parameteric influence on phase change heat transfer characteristics of 1-D and 2-D electrothermal deicing[J]. Journal of Aerospace Power, 2018, 33(4): 882-893. doi: 10.13224/j.cnki.jasp.2018.04.014
Citation: Analysis of parameteric influence on phase change heat transfer characteristics of 1-D and 2-D electrothermal deicing[J]. Journal of Aerospace Power, 2018, 33(4): 882-893. doi: 10.13224/j.cnki.jasp.2018.04.014

一维和二维电热除冰相变传热特性的参数影响分析

doi: 10.13224/j.cnki.jasp.2018.04.014
基金项目: 国家自然科学基金委员会资助面上项目(11572338);国家重点基础研究计划(2015CB755804)

Analysis of parameteric influence on phase change heat transfer characteristics of 1-D and 2-D electrothermal deicing

  • 摘要: 基于飞机电热除冰过程冰层融化的特征,开展了一维和二维电热除冰相变传热特性数值计算研究和参数影响分析,重点考虑了加热模式、冷却时间、加热功率和加热单元间隔等参数对冰层相变传热的影响。采用了基于焓-多孔介质方法的热焓模型,将计算区域看作是包括多层材料和冰、水及其混合区的多孔介质,采用了结构化网格拓扑结构对计算区域进行划分,采用了有限体积方法对控制方程组进行离散,采用线性插值的方法获得混合区的物性参数,耦合能量方程和液态水体积分数公式,迭代求解了计算域的温度分布,获得了不同材料间界面温度的变化,重点分析了冰-保护层界面的温度变化。基于二维电热除冰模型的冰-保护层界面温度不均匀特征,提出了耦合考虑冰-保护层界面热点和冷点温度的冰脱落温度判断准则。研究表明:高功率的周期性加热模式要优于低功率的连续性加热模式,采用合理的冷却时间和加热功率,可获得更低的能量消耗和更好的除冰效果。合理设置加热单元间隔可以提高周期性的除冰效率,但也会形成冷点和热点,造成冰-保护层界面温度分布的不均匀。冰-保护层界面的冷点类似于锚点,即使此刻热点的冰已经融化,整个冰层也无法脱落和剥离。因此,冰脱落的判断要耦合考虑界面热点和冷点的温度特征。

     

  • [1] LEE S,KIM H S,BRAGG M B.Investigation of factors that influence iced-airfoil aerodynamics[R].AIAA-2000-0099,2000.
    [2] CEBECI T,KAFYEKE F.Aircraft icing[J].Annual Review of Fluid Mechanics,2003,35(35):11-21.
    [3] Civil Aviation Authority.Aircraft icing handbook[M].Lower Hutt,New Zealand:Civil Aviation Authority,2000.
    [4] STALLABRASS J R.Thermal aspects of de-icer design [R].Ottawa,Canada:the 1st International Helicopter Icing Conference,1972.
    [5] BALIGA G.Numerical simulation of one-dimensional heat transfer in composite bodies with phase change[D].Toledo:the University of Toledo,1980.
    [6] MARANO J J.Numerical simulation of an electrothermal de-icer pad [D].Toledo:the University of Toledo,1982.
    [7] ROELKE R J,KEITH T G,DEWITT K J,et al.Efficient numerical simulation of a one-dimensional electrothermal deicer pad[J].Journal of Aircraft,1988,25(12):1097-1105.
    [8] CHAO D F.Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components[D].Toledo:the University of Toledo,1983.
    [9] LEFFEL K L.A numerical and experimental investigation of electrothermal aircraft deicing[D].Toledo:the University of Toledo,1986.
    [10] MASIULANIEC K C.A numerical simulation of the full two-dimensional electrothermal de-icer pad[D].Toledo:the University of Toledo,1987.
    [11] WRIGHT W B.A comparison of numerical methods for the prediction of two-dimensional heat transfer in an electrothermal deicer pad[D].Toledo:the University of Toledo,1987.
    [12] WRIGHT W B,KEITH T G,DEWITT K J.Transient two-dimensional heat transfer through a composite body with application to deicing of aircraft components[R].AIAA 88-0358,1988.
    [13] KEITH T G,DEWITT K J,WRIGHT W B.Overview of numerical codes developed for predicted electrothermal de-icing of aircraft blades[R].AIAA 88-0288,1988.
    [14] WRIGHT W B,KEITH T G,DEWITT K J.Numerical analysis of a thermal deicer[R].AIAA 92-0527,1992.
    [15] YASLIK A D,DEWITT K J,KEITH T G.Further developments in three-dimensional numerical simulation of electrothermal deicing systems[R].AIAA 92-0528,1992.
    [16] HUANG J R,KEITH T G,DEWITT K J.An efficient finite element method for aircraft de-icing problems[R].AIAA 92-0532,1992.
    [17] HUANG J R.Numerical simulation of an electrothermally de-iced aircraft surface using the finite element method[D].Toledo:the University of Toledo,1993.
    [18] HUANG J R,KEITH T G,DEWITT K J.Investigation of an electrothermal de-icer pad using a three-dimensional finite element simulation[R].AIAA 93-0397,1993.
    [19] HUANG J R,KEITH T G,DEWITT K J.Effect of curvature in the numerical simulation of an electrothermal de-icer pad[J].Journal of Aircraft,1995,32(1):84-91.
    [20] 常士楠,侯雅琴,袁修干.周期电加热控制律对除冰表面温度的影响[J].航空动力学报,2007,22(8):1247-1251.CHANG Shinan,HOU Yaqin,YUAN Xiugan.Influence of periodic electro-heating pulse on deicing surface temperature[J].Journal of Aerospace Power,2007,22(8):1247-1251.(in Chinese)
    [21] 常士楠,艾素霄,霍西恒,等.改进的电热除冰系统仿真[J].航空动力学报,2008,23(10):1753-1758.CHANG Shinan,AI Suxiao,HUO Xiheng,et al.Improved simulation of electrothermal de-icing system [J].Journal of Aerospace Power,2008,23(10):1753-1758.(in Chinese)
    [22] 肖春华.飞机电热除冰过程的传热特性及其影响研究 [D].四川 绵阳:中国空气动力研究与发展中心,2010.XIAO Chunhua.Study on heat transfer characteristics and effects of electrothermal aircraft deicing[D].Mianyang Sichuan:China Aerodynamics Research and Development Center,2010.(in Chinese)
    [23] THOMAS S K,CASSONI R P,MACARTHUR C D.Aircraft anti-icing and deicing techniques and modeling [J].Journal of Aircraft,1996,33(5):841-854.
    [24] VOLLER V R,CROSS M.Accurate solutions of moving boundary problems using the enthalpy method[J].International Journal of Heat and Mass Transfer,1981,24(3):545-556.
    [25] VOLLER V R,PRAKASH C.A fixed grid numerical modeling methodology for convection/diffusion mushy phase change problems[J].International Journal of Heat and Mass Transfer,1987,30(8):1709-1719.
    [26] VOLLER V R,SWAMINATHAN C R.Generalized source-based method for solidification phase change[J].Numerical Heat Transfer:Part B Fundamentals,1991,19(2):175-189.
    [27] KIRBY M S,HANSMAN R J.Experimental measurement of heat transfer from an iced surface during artificial and natural cloud icing conditions[R].AIAA 86-1352,1986.
    [28] ARIMILLI R V,KESHOCK E G.Measurements of local convective heat transfer coefficients on ice accretion shapes[R].AIAA 84-0018,1984.
    [29] BRAGG M B,CUMMINGS M J,LEE S,et al.Boundary-layer and heat-transfer measurements on an airfoil with simulated ice roughness[R].AIAA 96-0866,1996.
    [30] DUKHAN N,VAN J G,MASIULANIEC K C,et al.Convective heat transfer coefficients from various types of ice roughened surfaces in parallel and accelerated flow [R].AIAA 96-0867,1996.
    [31] SHERIF S A,PASUMARTHI N.Local heat transfer and ice accretion in high speed subsonic flow over an airfoil [R].AIAA 95-2104,1995.
    [32] HENRY R C,GUFFOND D,FRANATILD E,et al.Heat transfer coefficient measurement on iced airfoil in a small icing wind tunnel[J].Journal of Thermophysics and Heat Transfer,2015,14(3):348-354.
    [33] BERGMAN T L,LAVINE A S,INCROPERA F P,et al.Fundamentals of heat and mass transfer[M].New York:John Wiley and Sons,2007.
    [34] WRIGHT W B,DEWITT K J,KEITH T G.Numerical simulation of icing,deicing,and shedding[R].AIAA 91-0655,1991.
  • 加载中
计量
  • 文章访问数:  740
  • HTML浏览量:  3
  • PDF量:  599
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-31
  • 刊出日期:  2018-04-28

目录

    /

    返回文章
    返回