留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型尖楔结构燃气流热试验工况确定方法

齐玢 董素君 石泳 左光 王浚

齐玢, 董素君, 石泳, 左光, 王浚. 典型尖楔结构燃气流热试验工况确定方法[J]. 航空动力学报, 2018, 33(4): 911-918. doi: 10.13224/j.cnki.jasp.2018.04.017
引用本文: 齐玢, 董素君, 石泳, 左光, 王浚. 典型尖楔结构燃气流热试验工况确定方法[J]. 航空动力学报, 2018, 33(4): 911-918. doi: 10.13224/j.cnki.jasp.2018.04.017
Determination method for thermal test condition of the tip wedge structure heated by high temperature gas flow[J]. Journal of Aerospace Power, 2018, 33(4): 911-918. doi: 10.13224/j.cnki.jasp.2018.04.017
Citation: Determination method for thermal test condition of the tip wedge structure heated by high temperature gas flow[J]. Journal of Aerospace Power, 2018, 33(4): 911-918. doi: 10.13224/j.cnki.jasp.2018.04.017

典型尖楔结构燃气流热试验工况确定方法

doi: 10.13224/j.cnki.jasp.2018.04.017
基金项目: 国家自然科学基金(11102010)

Determination method for thermal test condition of the tip wedge structure heated by high temperature gas flow

  • 摘要: 在传统冷壁热流模拟方法的基础上,进一步提出以热壁温度及热流密度的时序变化曲线为控制目标的燃气流热试验工况确定方法,即利用壁温控制目标与实测值的偏差对热壁热流控制目标做一定修正,以尽可能消除和弥补前期试验误差,同时利用300K冷壁边界热流密度数据库插值迭代方法,快速确定一定气动热模拟所需燃气流温度,解决了沿飞行轨迹瞬态热试验技术难题之一。利用CFD数值模拟方法,建立了典型尖楔结构高/中温双路燃气流组合热试验300K冷壁边界热流密度数据库,并针对典型尖楔结构沿某飞行轨迹9个典型状态气动热模拟需求,确定相应双路燃气流热模拟参数。相关数值计算结果显示,驻点区域热流密度平均模拟偏差为4.5%,平板区热流密度平均模拟偏差为4.6%,两者最大模拟偏差均不大于8%,满足工程试验精度要求。同时,瞬态热分析结果显示第45s时,距驻点1mm处最大温度梯度达到21K/mm,距驻点10.1mm处最大温度梯度达到18K/mm,满足气动热大温度梯度效应需求。

     

  • [1] JOYCE P,POMROY J B.The Hyper-X launch vehicle:challenges and design considerations for hypersonic flight testing[R].AIAA-2005-3333,2005.
    [2] RONDEAU C M,JORRIS T R.X-51A scramjet demonstrator program:waverider ground and flight test[R].Armed Services Technical Information Agency Documents,ADA593742,2013.
    [3] 罗金玲,周丹,康宏琳,等.典型气动问题试验方法研究的综述[J].空气动力学学报,2014,32(2):600-609.LUO Jinling,ZHOU Dan,KANG Honglin,et al.Summarization of experimental methods associated with typical aerodynamic issues[J].Acta Aerodynamica Sinica,2014,32(2):600-609.(in Chinese)
    [4] GRANT P,SUSAN P.A heating analysis of the nosecap and leading edges of the X-34 vehicle[R].AIAA 98-0878,1998.
    [5] DINESH K P.X-33 aerothermal environment simulations and aerothermo-dynamic design[R].AIAA 98-0868,1998.
    [6] 吴大方,周岸峰,郑力铭,等.瞬态热冲击环境下金属蜂窝板结构的热防护特性[J].航空动力学报,2014,29(6):1261-1270.WU Dafang,ZHOU Anfeng,ZHENG Liming,et al.Thermal protection performances of metallic honeycomb panel structure at transient thermal shock environment[J].Journal of Aerospace Power,2014,29(6):1261-1270.(in Chinese)
    [7] 吴大方,王岳武,商兰,等.1200℃高温环境下板结构热模态试验研究与数值模拟[J].航空学报,2016,37(6):1861-1875.WU Dafang,WANG Yuewu,SHANG Lan,et al.Test research and numerical simulation on thermal modal of plate structure in 1200℃ high-temperature environments[J].Acta Aeronautica et Astronautica Sinica,2016,37(6):1861-1875.(in Chinese)
    [8] JEFFREY S H,STEPHEN F H.Test capabilities and recent experiences in the NASA Langley 8-foot high temperature tunnel[R].AIAA-2000-2646,2000.
    [9] LAWRENCE D H,KENNETH E R,DAVID W W,et al.Hyper-X engine testing in the NASA Langley 8-foot high temperature tunnel[R].AIAA-2000-3605,2000.
    [10] YOSHIKI M,SEBASTIANO C.Thermal responses of a large nose cap model tested at Scirocco[R].AIAA-2005-174,2005.
    [11] NORMAN E.Future requirements for hypersonic aerodynamic and aerothermodynamic facilities[R].AIAA 92-3903,1992.
    [12] 姚峰,董素君,王浚.高温燃气热环境模拟方案仿真研究[J].航空动力学报,2010,25(4):768-773.YAO Feng,DONG Sujun,WANG Jun.Numerical analysis of subsonic high-temperature-gas thermal environment simulation[J].Journal of Aerospace Power,2010,25(4):768-773.(in Chinese)
    [13] 董素君,齐玢,李志杰,等.低速高温燃气流热模拟试验方法和设备[J].航空动力学报,2012,27(5):961-968.DONG Sujun,QI Bin,LI Zhijie,et al.Approach and facility for aerodynamic thermal test by lower speed and high-temperature gas flow[J].Journal of Aerospace Power,2012,27(5):961-968.(in Chinese)
    [14] 董素君,李志杰,王浚.尖楔结构低速高/中温双路气流组合热试验方法[J].航空动力学报,2013,28(2):290-296.DONG Sujun,LI Zhijie,WANG Jun.Combined heating method of low speed and high/middle temperature gas flow for thermal test of tip wedge structure[J].Journal of Aerospace Power,2013,28(2):290-296.(in Chinese)
    [15] JOHN J B,RUSSEL M C.Critical hypersonic aerothermodynamic phenomena[J].Annual Review of Fluid Mechanics,2006,38(1):129-157.
    [16] 王智勇,巨亚堂,黄世勇.结构热试验中冷壁热流边界模拟方法研究[J].航天器环境工程,2008,25(1):33-35.WANG Zhiyong,JU Yatang,HUANG Shiyong.The cold-wall heat flux boundary condition simulation for the thermal-structure experiment[J].Spacecraft Environment Engineering,2008,25(1):33-35.(in Chinese)
    [17] 梁强,许泉,阳华.红外头罩电弧风洞试验状态的量化新判据[J].上海航天,2013,30(3):11-15.LIANG Qiang,XU Quan,YANG Hua.A new quantified criterion to arc heated wind tunnel test of infrared dome[J].Aerospace Shanghai,2013,30(3):11-15.(in Chinese)
    [18] 聂涛,刘伟强.高超声速飞行器前缘流固耦合计算方法研究[J].物理学报,2012,61(18):287-293.NIE Tao,LIU Weiqiang.Study of coupled fluid and solid for a hypersonic lending edge[J].Acta Physica Sinica,2012,61(18):287-293.(in Chinese)
  • 加载中
计量
  • 文章访问数:  686
  • HTML浏览量:  0
  • PDF量:  560
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-14
  • 刊出日期:  2018-04-28

目录

    /

    返回文章
    返回