留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液氢绕回转体非定常空化的流动特性

王永康 张敏弟 陈泰然 黄彪

王永康, 张敏弟, 陈泰然, 黄彪. 液氢绕回转体非定常空化的流动特性[J]. 航空动力学报, 2018, 33(8): 1845-1854. doi: 10.13224/j.cnki.jasp.2018.08.007
引用本文: 王永康, 张敏弟, 陈泰然, 黄彪. 液氢绕回转体非定常空化的流动特性[J]. 航空动力学报, 2018, 33(8): 1845-1854. doi: 10.13224/j.cnki.jasp.2018.08.007
Unsteady cavitating flow of liquid hydrogenaround the ogive body[J]. Journal of Aerospace Power, 2018, 33(8): 1845-1854. doi: 10.13224/j.cnki.jasp.2018.08.007
Citation: Unsteady cavitating flow of liquid hydrogenaround the ogive body[J]. Journal of Aerospace Power, 2018, 33(8): 1845-1854. doi: 10.13224/j.cnki.jasp.2018.08.007

液氢绕回转体非定常空化的流动特性

doi: 10.13224/j.cnki.jasp.2018.08.007
基金项目: 国家自然科学基金(51479002)

Unsteady cavitating flow of liquid hydrogenaround the ogive body

  • 摘要: 为研究航空发动机内部低温燃料的非定常空化流动特性,采用大涡模拟(LES)对液氢绕回转体的非定常流动特性进行了分析。通过与实验结果的对比可知,所采用的数值计算方法能够有效地模拟液氢绕回转体流动的非定常过程。讨论了空化演化过程和旋涡动力特性,研究结果表明:空化的非定常演变过程大致可以分为3个阶段:附着空穴生长阶段、大尺度空泡发展阶段和小尺度空泡发展阶段,且反向射流是造成空穴不稳定及脱落的主要原因;探讨了空化与旋涡之间的交互作用,明确了空穴前端和尾端处的涡量源于旋涡伸长项,空穴内部涡量源于旋涡扩张项,空穴交界面、反向射流头部区域涡量源于斜压扭矩项。

     

  • [1] BATCHELOR G K.An introduction to fluid dynamics[M].New York:Cambridge University Press,1967.
    [2] 黄继汤.空化与空蚀的原理及应用[M].北京:清华大学出版社,1991.
    [3] TSUJIMOTO Y,YOSHIDA Y,HASHIMATO T,et al.Observations of oscillating cavitation of an inducer[J].Journal of Fluids Engineering,1997,119(4):775-781.
    [4] MATSUYAMA K,OHIGASHI H,ITO T,et al.H-ⅡA rocket engine develop ment[J].Core Mitsubishi Juko Giho,2002,39(2):8-11.
    [5] BAKIR F,REY R,GERBER A G.Numerical and experimental investigations of the cavitating behavior of an inducer[J].International Journal of Rotating Machinery,2004,10(1):15-25.
    [6] 季斌,罗先武,彭晓星,等.绕扭曲翼型三维非定常空泡脱落结构的数值分析[J].水动力学研究与进展,2010,25(2):217-223.JI Bin,LUO Xianwu,PENG Xiaoxing,et al.Numerical analysis for three dimensional unsteady cavitation shedding structure over a twisted hydrofoil[J].Journal of Hydrodynamics,2010,25(2):217-223.(in Chinese)
    [7] HORD J.Cavitation in liquid cryogens:Ⅰ venturi[R].NASA CR-2054,1972.
    [8] HORD J.Cavitation in liquid cryogens:Ⅲ ogive[R].NASA CR-2242,1973.
    [9] CERVONE A,BRAMANTI C,RAPPOSELLI E,et al.Thermal cavitation experiments on a NACA0015 hydrofoil[J].Journal of Fluids Engineering,2006,128(2):326-331.
    [10] YOSHIDA Y,KIKUTA K,HASEGAWA S,et al.Thermodynamic effect on a cavitating inducer in liquid nitrogen[J].Journal of Fluids Engineering,2007,129(3):273-278.
    [11] GIORGI M G D,BELLO D,FICARELLA A.Analysis of thermal effects in a cavitating orifice using rayleigh equation and experiments[J].Journal of Engineering for Gas Turbines and Power,2010,132(9):128-132.
    [12] ZHU Jiakai,ZHAO Dongfang,XU Lu,et al.Interactions ofvortices,thermal effects and cavitation in liquid hydrogen cavitating flows[J].Internation Journal of Hydrogen Energy,2015,41(1):614-631.
    [13] FRUMAN D H.Estimation of thermal effects in cavitation of thermosensible liquids[J].International Journal of Heat and Mass Transfer,1999,42(17):3195-3204.
    [14] DESHPANDE M,FENG J,MERKLE C L.Numerical modeling of the thermodynamic effects of cavitation[J].Journal of Fluids Engineering,1997,119(2):420-427.
    [15] HOSANGADI A,AHUJA V.Numerical study of cavitation in cryogenic fluids[J].Journal of Fluids Engineer,2005,127(2):267-281.
    [16] CAI Jun,HUAI Xiulan,LI Xunfeng.Dynamic behaviors of cavitation bubble for the steady cavitating flow[J].Journal of Thermal Science,2009,18(4):338-344.
    [17] CAI Jun,LI Xunfeng,LIU Bin,et al.Effect of cavitating flow on forced convective heat transfer:a modeling study[J].Chinese Science Bulletin,2014,59(14):1580-1590.
    [18] 季斌,罗先武,吴玉林,等.考虑热力学效应的高温水空化模拟[J].清华大学学报,2010,50(2):262-265.JI Bin,LUO Xianwu,WU Yulin,et al.Cavitating flow simulation for high temperature water based on thermodynamic effects[J].Journal of Tsinghua University (Science and Technology),2010,50(2):262-265.(in Chinese)
    [19] 崔振东,刘斌,蔡军,等.湍流模型对微通道内空化流动模拟结果的影响分析[J].中国科学院大学学报,2016,33(2):213-217.CUI Zhendong,LIU Bin,CAI Jun,et al.Analysis of simulation results for cavitating flows in micro-channels using different turbulence models[J].Journal of University of Chinese Academy of Sciences,2016,33(2):213-217.(in Chinese)
    [20] 黄彪.非定常空化流动数值计算模型研究及流动机理分析[D].北京:北京理工大学,2012.HUANG Biao.Physical numerical investigation of unsteady cavitation flows[D].Beijing Institute of Tecnology,2012.(in Chinese)
    [21] JI Bin,LUO Xianwu,PENG Xiaoxing,et al.Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitation flow around a twisted hydrofoil[J].Journal of Hydrofoil,2013,25(4):510-519.
    [22] NICOUD F,DUCROS F.Subgrid scale stress modelling based on the square of the velocity gradient tensor[J].Flow Turbul Combust,1999,62(3):183-200.
    [23] KUBOTA A,KATO H,YAMAGUCHI H.A new modeling of cavitating flows:a numerical study of unsteady cavitation on a hydrofoil section[J].Journal of Fluid Mechanics,1992,240(1):59-56.
  • 加载中
计量
  • 文章访问数:  527
  • HTML浏览量:  9
  • PDF量:  489
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-21
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回