留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于表面缺陷特征的疲劳寿命预测方法

魏大盛 陈妍妍 王延荣 高靖云

魏大盛, 陈妍妍, 王延荣, 高靖云. 基于表面缺陷特征的疲劳寿命预测方法[J]. 航空动力学报, 2019, 34(1): 92-98. doi: 10.13224/j.cnki.jasp.2019.01.011
引用本文: 魏大盛, 陈妍妍, 王延荣, 高靖云. 基于表面缺陷特征的疲劳寿命预测方法[J]. 航空动力学报, 2019, 34(1): 92-98. doi: 10.13224/j.cnki.jasp.2019.01.011
Fatigue life prediction method based on the features of surface defects[J]. Journal of Aerospace Power, 2019, 34(1): 92-98. doi: 10.13224/j.cnki.jasp.2019.01.011
Citation: Fatigue life prediction method based on the features of surface defects[J]. Journal of Aerospace Power, 2019, 34(1): 92-98. doi: 10.13224/j.cnki.jasp.2019.01.011

基于表面缺陷特征的疲劳寿命预测方法

doi: 10.13224/j.cnki.jasp.2019.01.011
基金项目: 国家自然科学基金(51475024);中国航空研究院上海分院指南项目(AR026)

Fatigue life prediction method based on the features of surface defects

  • 摘要: 在含表面缺陷试样的疲劳数据的基础上,提出了表面缺陷对疲劳寿命影响的尺寸参数,将其引入Walker寿命方程,建立了可以考虑表面缺陷尺寸特征的疲劳寿命预测方程。将该方程的寿命预测结果同考虑应力梯度的寿命预测方法的计算结果进行对比,两者在±3倍以内,验证了方法是准确可靠的。进而,将该方程应用于粉末高温合金涡轮盘的疲劳寿命预测中,获得了不同尺寸的表面缺陷对涡轮盘寿命的影响规律,其工程意义在于:依据涡轮盘危险位置的应力特征,能够给出存在缺陷时的疲劳寿命,可作为使用过程中的重要参考数据,一旦出现漏检的表面缺陷,也能够保证涡轮盘的安全工作。

     

  • [1] 张丽娜,张麦仓,李晓,等.粉末高温合金中非金属夹杂问题的研究进展[J].兵器材料科学与工程,2001,24(3):64-68.ZHANG Lina,ZHANG Maicang,LI Xiao,et al.Progress in study of nonmetallic inclusion in powder metallurgy (P/M) superalloys[J].Ordnance Material Science and Engineering,2001,24(3):64-68.(in Chinese)
    [2] 刘丽玉,陶春虎,刘昌奎,等.发动机粉末合金高压涡轮盘断裂的原因[J].机械工程材料,2014,38(8):108-112.LIU Liyu,TAO Chunhu,LIU Changkui,et al.Fracture causes of powder metallurgy high pressure turbine disk of engine[J].Materials for Mechanical Engineering,2014,38(8):108-112.(in Chinese)
    [3] 刘新灵,陶春虎.FGH96粉末高温合金损伤行为与寿命预测[J].失效分析与预防,2011,6(2):124-129.LIU Xinling,TAO Chunhu.Damage behavior and life prediction of FGH96 powder metallurgy superalloy[J].Failure Analysis and Prevention,2011,6(2):124-129.(in Chinese)
    [4] GRISON J,REMY L.Fatigue failure probability in a powder metallurgy Ni-base superalloy[J].Engineering Fracture Mechanics,1997,57(1):41-55.
    [5] SHAMBLEN C E,CHANG D R.Effect of inclusions on LCF life of HIP plus heat treated powder metal rené 95[J].Metallurgical Transactions B,1985,16(4):775-784.
    [6] HURON E S,ROTH P G.The influence of inclusion on low cycle fatigue life in a P/M nickel-base disk superalloy[R].Warrendale,Pennsylvania,USA:The Minerals,Metals and Materials Society,1996:359.
    [7] 国为民,吴剑涛,张凤戈,等.FGH95镍基高温合金粉末中的夹杂及其对合金疲劳性能的影响[J].粉末冶金工业,2000,10(3):23-28.GUO Weimin,WU Jiantao,ZHANG Fengge,et al.Inclusion in powder of nickle base superalloy FGH95 and the effect on LCF of the superalloy[J].Powder Metallurgy Industry,2000,10(3):23-28.(in Chinese)
    [8] 何承群,余泉茂,胡本芙.FGH95合金LCF断裂寿命与夹杂特征关系的研究[J].金属学报,2001,37(3):247-252.HE Chengqun,YU Quanmao,HU benfu.Study of the relationship between the LCF life of FGH95 alloy and the inclusion characteristics[J].Acta Metallurgica Sinica,2001,37(3):247-252.(in Chinese)
    [9] JABLONSKI D A.The effect of ceramic inclusions on the low cycle fatigue life of low carbon astroloy subjected to hot isostatic pressing[J].Materials Science & Engineering,1981,48(2):189-198.
    [10] 袁善虎.粉末冶金材料及结构的力学行为试验与数值模拟[D].北京:北京航空航天大学,2014.YUAN Shanhu.Experiment and numerical modeling of the mechanical behaviors of a P/M superalloy and its structures[D].Beijing:Beijing University of Aeronautics and Astronautics,2014.(in Chinese)
    [11] LANKFORD J.The growth of small fatigue cracks in 7075-T6 aluminum[J].Fatigue & Fracture of Engineering Materials & Structures,1982,5(3):233-248.
    [12] ATZORI B,LAZZARIN P.Notch sensitivity and defect sensitivity under fatigue loading:two sides of the same medal[J].International Journal of Fracture,2001,107(1):1-8.
    [13] El HADDAD M H,TOPPER T H,SMITH K N.Prediction of non propagating cracks[J].Engineering Fracture Mechanics,1979,11(3):573-584.
    [14] 左平.粉末高温合金小裂纹扩展规律研究[D].北京:北京航空航天大学,2014.ZUO Ping.Study on the small crack characteristics in power metallurgy superalloy[D].Beijing:Beijing University of Aeronautics and Astronautics,2014.(in Chinese)
    [15] MOREL F,MOREL A,NADOT Y.Comparison between defects and micro-notches in multiaxial fatigue:the size effect and the gradient effect[J].International Journal of Fatigue,2009,31(2):263-275.
    [16] HERASYMCHUK O M,KONONUCHENKO O V,BONDARCHUK V I.Fatigue life calculation for titanium alloys considering the influence of microstructure and manufacturing defects[J].International Journal of Fatigue,2015,81:257-264.
    [17] KUNZ L,LUK P,KONECˇN R R,et al.Casting defects and high temperature fatigue life of IN 713LC superalloy[J].International Journal of Fatigue,2012,41:47-51.
    [18] VINCENT M,NADOT-MARTIN C,NADOT Y,et al.Fatigue from defect under multiaxial loading:defect stress gradient (DSG) approach using ellipsoidal equivalent inclusion method[J].International Journal of Fatigue,2014,59:176-187.
    [19] 王延荣,李宏新,袁善虎,等.考虑应力梯度的缺口疲劳寿命预测方法[J].航空动力学报,2013,28(6):1208-1214.WANG Yanrong,LI Hongxin,YUAN Shanhu,et al.Method for notched fatigue life prediction with stress gradient[J].Journal of Aerospace Power,2013,28(6):1208-1214.(in Chinese)
    [20] 陈光.一起奇特的高压涡轮非包容故障:左发甩出的涡轮盘断块打入右发尾喷管中[J].航空发动机,2009,35(1):60-62.
  • 加载中
计量
  • 文章访问数:  821
  • HTML浏览量:  4
  • PDF量:  821
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-04
  • 刊出日期:  2019-01-28

目录

    /

    返回文章
    返回