留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热载荷下热障涂层表-界面裂纹间的相互影响

吕凯 徐颖强 孙戬 李征 赵兴

吕凯, 徐颖强, 孙戬, 李征, 赵兴. 热载荷下热障涂层表-界面裂纹间的相互影响[J]. 航空动力学报, 2019, 34(1): 125-124. doi: 10.13224/j.cnki.jasp.2019.01.015
引用本文: 吕凯, 徐颖强, 孙戬, 李征, 赵兴. 热载荷下热障涂层表-界面裂纹间的相互影响[J]. 航空动力学报, 2019, 34(1): 125-124. doi: 10.13224/j.cnki.jasp.2019.01.015
Interaction between surface and interface cracks in thermal barrier coatings under thermal load[J]. Journal of Aerospace Power, 2019, 34(1): 125-124. doi: 10.13224/j.cnki.jasp.2019.01.015
Citation: Interaction between surface and interface cracks in thermal barrier coatings under thermal load[J]. Journal of Aerospace Power, 2019, 34(1): 125-124. doi: 10.13224/j.cnki.jasp.2019.01.015

热载荷下热障涂层表-界面裂纹间的相互影响

doi: 10.13224/j.cnki.jasp.2019.01.015
基金项目: 国家自然科学基金(11072196,10672134,51675427)

Interaction between surface and interface cracks in thermal barrier coatings under thermal load

  • 摘要: 针对高温热载荷条件下APS制热障涂层裂纹失效问题,基于涂层系统热弹、热弹塑性本构关系,考虑陶瓷层/氧化层/粘结层界面凹凸形貌,依据表、界面裂纹位置、性质不同,分别运用断裂力学和损伤力学理论建立裂纹演化模型,结合围线积分和内聚力单元法,分析了热载荷下表、界面裂纹断裂参量及开裂状态,研究了陶瓷层表面裂纹与粘结层/氧化层界面裂纹间的相互影响,揭示了热、力、化多场耦合下的裂纹失效机理。结果表明,表面裂纹大幅改变界面微区域的应力分布状态,靠近界面时能使界面裂纹扩展程度整体增加20%,且相邻凸峰处开裂非均匀性可达81%,表面裂纹断裂参量主要受多层结构热失配及缺陷主导,界面裂纹对其影响相对较小,分析结果与试验结果一致。

     

  • [1] KUMAR V,KANDASUBRAMANIAN B.Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications[J].Particuology,2016,27(4):1-28.
    [2] PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.
    [3] 周益春,刘奇星,杨丽,等.热障涂层的破坏机理与寿命预测[J].固体力学学报,2010,31(5):504-531.ZHOU Yichun,LIU Qixing,YANG Li,et al.Failure mechanisms and life prediction of thermal barrier coatings[J].Chinese Journal of Solid Mechanics,2010,31(5):504-531.(in Chinese)
    [4] KUMAR V,BALASUBRAMANIAN A.Progress update on failure mechanisms of advanced thermal barrier coatings:a review[J].Progress in Organic Coatings,2016,90:54-82.
    [5] HUTCHINSON J W,HE M Y,EVANS A G.The influence of imperfections on the nucleation and propagation of buckling driven delaminations[J].Journal of the Mechanics and Physics of Solids,2000,48(4):709-734.
    [6] CHEN X,HUTCHINSON J W,EVANS A G,et al.On the propagation and coalescence of delamination cracks in compressed coatings with application to thermal barrier systems[J].Acta Materialia,2003,51(7):2017-2030.
    [7] BUMGARDNER C,CROOM B,LI X D.High-temperature delamination mechanisms of thermal barrier coatings:in-situ digital image correlation and finite element analyses[J].Acta Materialia,2017,128:54-63.
    [8] ZHU W,YANG L,ZHOU Y C,et al.Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model[J].International Journal of Plasticity,2015,64(7):76-87.
    [9] ZHANG W X,FAN X L,WANG T J.The surface cracking behavior in air plasma sprayed thermal barrier coating system incorporating interface roughness effect[J].Applied Surface Science,2011,258(2):811-817.
    [10] 王铁军,范学领,孙永乐,等.重型燃气轮机高温透平叶片热障涂层系统中的应力和裂纹问题研究进展[J].固体力学学报,2016,37(6):477-517.WANG Tiejun,FAN Xueling,SUN Yongle,et al.Research progress on stress and crack in a thermal barrier coating system of high temperature turbine blade for heavy gas turbine[J].Chinese Journal of Solid Mechanics,2016,37(6):477-517.(in Chinese)
    [11] WANG L,LI D C,YANG J S,et al.Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods:a review[J].Journal of the European Ceramic Society,2016,36(6):1313-1331.
    [12] SEILER P,BAKER M,ROSLER J.Multi-scale failure mechanisms of thermal barrier coating systems[J].Computational Materials Science,2013,80(12):27-34.
    [13] LEO C V D,LUK-CYR J,LIU H W,et al.A new methodology for characterizing traction-separation relations for interfacial delamination of thermal barrier coatings[J].Acta Materialia,2014,71(1):306-318.
    [14] EVANS A G,HE M Y,HUTCHINSON J W.Mechanics-based scaling laws for the durability of thermal barrier coatings[J].Progress in Materials Science,2001,46(3/4):249-271.
    [15] KARLSSON A M,EVANS A G.A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems[J].Acta Materialia,2001,49(10):1793-1804.
    [16] AKTAA J,SFAR K,MUNZ D.Assessment of TBC systems failure mechanisms using a fracture mechanics approach[J].Acta Materialia,2005,53(16):4399-4413.
    [17] ZHOU C G,WANG N,XU H B.Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings[J].Materials Science and Engineering:A,2007,452/453(24):569-574.
    [18] BIAAS M.Finite element analysis of stress distribution in thermal barrier coatings[J].Surface and Coatings Technology,2008,202(24):6002-6010.
    [19] 孙戬,徐颖强,李万钟,等.热生长下热障涂层残余应力及失效分析[J].中国表面工程,2016,29(1):25-31.SUN Jian,XU Yingqiang,LI Wanzhong,et al.Residual stress and failure analysis of thermal barrier coatings with thermal growth[J].China Surface Engineering,2016,29(1):25-31.(in Chinese)
    [20] LI R G,YANG G J,LI C X,et al.Strain-induced multiscale structural changes in lamellar thermal barrier coatings[J].Ceramics International,2016,43(2):2252-2266.
    [21] HEEG B,TOLPYGO V K,CLARKE D R.Damage evolution in thermal barrier coatings with thermal cycling[J].Journal of the American Ceramic Society,2011,94(1):S112-S119.
  • 加载中
计量
  • 文章访问数:  948
  • HTML浏览量:  6
  • PDF量:  577
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-09
  • 刊出日期:  2019-01-28

目录

    /

    返回文章
    返回