留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

振动环境对相变组件热控性能影响的实验

罗叶刚 邢玉明 赵亮 刘鑫

罗叶刚, 邢玉明, 赵亮, 刘鑫. 振动环境对相变组件热控性能影响的实验[J]. 航空动力学报, 2019, 34(3): 592-599. doi: 10.13224/j.cnki.jasp.2019.03.010
引用本文: 罗叶刚, 邢玉明, 赵亮, 刘鑫. 振动环境对相变组件热控性能影响的实验[J]. 航空动力学报, 2019, 34(3): 592-599. doi: 10.13224/j.cnki.jasp.2019.03.010
Experiment on the thermal management performance of phase change material under vibration environment[J]. Journal of Aerospace Power, 2019, 34(3): 592-599. doi: 10.13224/j.cnki.jasp.2019.03.010
Citation: Experiment on the thermal management performance of phase change material under vibration environment[J]. Journal of Aerospace Power, 2019, 34(3): 592-599. doi: 10.13224/j.cnki.jasp.2019.03.010

振动环境对相变组件热控性能影响的实验

doi: 10.13224/j.cnki.jasp.2019.03.010
基金项目: 航空科学基金(20172851018)

Experiment on the thermal management performance of phase change material under vibration environment

  • 摘要: 为了研究振动环境对相变组件热控性能的影响,制备了基于纯硬脂酸和硬脂酸/泡沫铜复合相变材料的两种相变热控实验件,并进行了静止和振动环境中的热控实验。实验结果表明:泡沫铜的存在能够有效地强化相变组件的热控性能,在5000W/m2时,添加泡沫铜后平衡温度降低了19℃,有效热控时间延长了19.4%;在振动环境下,纯硬脂酸实验件的平衡温度降低了9.5℃,有效热控时间延长了13.2%;硬脂酸/泡沫铜实验件的有效热控时间延长了10.5%,振动带来的强迫对流能够有效强化相变组件的热控性能;并且相对于振动频率,振幅变化对影响结果的扰动较小,在一定的频率范围内,振动的影响随着频率的增加而变大。该研究可以为机载电子设备相变热控技术的应用提供参考。

     

  • [1] YEH L T.Review of heat transfer technologies in electronic equipment[J].Journal of Electronic Packaging,1995,117(4):333-339.
    [2] 闵桂荣,郭舜.航天器热控制[M].北京:科学出版社,1998:320-357.
    [3] 潘艾刚,王俊彪,张贤杰.相变温控技术在航天热控领域中的应用现状及展望[J].材料导报,2013,27(23):113-119.PAN Aigang,WANG Junbiao,ZHANG Xianjie.A review on development and applications of metel phase change technology in thermal control for aeronautics[J].Materials Review,2013,27(23):113-119.(in Chinese)
    [4] 张芳,王小群,杜善义.相变温控在电子设备上的应用研究[J].电子器件,2007,30(5):1939-1942.ZHANG Fang,WANG Xiaoqun,DU Shanyi.Investigation on application of phase change thermal control in electronic devices[J].Chinese Journal of Electron Devices,2007,30(5):1939-1942.(in Chinese)
    [5] HUSSAIN A,TSO C Y,CHRISTOPHER Y H,et al.Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite[J].Energy,2016,115:209-218.
    [6] WANG Xiangqi,MUJUMDAR A S,YAP C.Effect of orientation for phase change material (PCM)-based heat sinks for transient thermal management of electric components[J].International Communications in Heat and Mass Transfer,2007,34(7):801-808.
    [7] FOK S C,SHEN W b,TAN F L.Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks[J].International Journal of Thermal Sciences,2010,49(1):109-117.
    [8] ZHAO Liang,XING Yuming,WANG Ze,et al.The passive thermal management system for electronic device using low-melting-point alloy as phase change material[J].Applied Thermal Engineering,2017,125:317-327.
    [9] ZHANG Peng,MENG Z N,ZHU H,et al.Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J].Applied Energy,2017,185:1971-1983.
    [10] 迟蓬涛,高红霞,余建祖,等.翅片-泡沫铜复合结构的导热增强作用[J].航空动力学报,2012,27(4):854-860.CHI Pengtao,GAO Hongxia,YU Jianzu,et al.Heat transfer enhancement of fin-copper foam composite structure[J].Journal of Aerospace Power,2012,27(4):854-860.(in Chinese)
    [11] LAFDI K,MESALHY O,SHAIKH S.Experimental study on the influence of foam porosity and pore size on the melting of phase change materials[J].Journal of Applied Physics,2007,102(8):083549.1-083549.6.
    [12] LI Tingxian,LEE J H,WANG Ruzhu,et al.Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application[J].International Journal of Heat and Mass Transfer,2014,75(7):1-11.
    [13] LI Tingxian,LEE J H,WANG Ruzhu,et al.Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes[J].Energy,2013,55(1):752-761.
    [14] WU S,LI T X,YAN T,et al.High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage[J].International Journal of Heat and Mass Transfer,2016,102:733-744.
    [15] ZHOU D,ZHAO C Y.Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials[J].Applied Thermal Engineering,2011,31(5):970-977.
    [16] MILLS A,FARID M,SELMAN J R,et al.Thermal conductivity enhancement of phase change materials using a graphite matrix[J].Applied Thermal Engineering,2006,26(14/15):1652-1661.
    [17] LUO Jianfeng,YIN Hongwi,LI Wenyu,et al.Numerical and experimental study on the heat transfer properties of the composite paraffin/expanded graphite phase change material[J].International Journal of Heat and Mass Transfer,2015,84:237-244.
    [18] BINET B,LACROIX M.Numerical study of natural-convection-dominated melting inside uniformly and discretely heated rectangular cavities[J].Numerical Heat Transfer:Part A Application,1998,33(2):207-224.
    [19] ZHU Feng,ZHANG Chuan,GONG Xiaolu.Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite[J].Applied Thermal Engineering,2016,109:373-383.
    [20] 张靖驰,盛强,任维佳,等.微重力条件下泡沬复合相变材料蓄热装置数值仿真[J].空间科学学报,2016,36(3):336-343.ZHANG Jingchi,SHENG Qiang,REN Weijia,et al.Numerical simulation of thermal storage device of foam composite phase change material in microgravity[J].Chinese Journal of Space Science,2016,36(3):336-343.(in Chinese)
  • 加载中
计量
  • 文章访问数:  494
  • HTML浏览量:  0
  • PDF量:  454
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-05
  • 刊出日期:  2019-03-28

目录

    /

    返回文章
    返回