留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间RURS机构的三维仿生扑翼机构设计与分析

从梦磊 李君兰

从梦磊, 李君兰. 基于空间RURS机构的三维仿生扑翼机构设计与分析[J]. 航空动力学报, 2019, 34(3): 692-700. doi: 10.13224/j.cnki.jasp.2019.03.022
引用本文: 从梦磊, 李君兰. 基于空间RURS机构的三维仿生扑翼机构设计与分析[J]. 航空动力学报, 2019, 34(3): 692-700. doi: 10.13224/j.cnki.jasp.2019.03.022
Design and analysis of three-dimensional bio-inspired flapping wing mechanism based on spatial RURS linkage[J]. Journal of Aerospace Power, 2019, 34(3): 692-700. doi: 10.13224/j.cnki.jasp.2019.03.022
Citation: Design and analysis of three-dimensional bio-inspired flapping wing mechanism based on spatial RURS linkage[J]. Journal of Aerospace Power, 2019, 34(3): 692-700. doi: 10.13224/j.cnki.jasp.2019.03.022

基于空间RURS机构的三维仿生扑翼机构设计与分析

doi: 10.13224/j.cnki.jasp.2019.03.022
基金项目: 国家自然科学基金(51305294);机构理论与装备设计教育部重点实验室开放基金

Design and analysis of three-dimensional bio-inspired flapping wing mechanism based on spatial RURS linkage

  • 摘要: 为实现仿昆虫翼尖的空间“8”字型运动轨迹,设计了一种基于空间revolute-universal-revolute-spherical(RURS)四杆机构的扑翼机构,通过单自由度驱动即可输出三维的空间“8”字轨迹。运用Denavit-Hartenberg参数法建立了空间四杆机构的运动学模型,利用遗传算法对机构进行了优化,得到了利于扑翼飞行的机构参数。基于该空间四杆机构的优化结果,建立了一种微型的扑翼机构虚拟样机,通过ADAMS仿真得到其输出运动并验证了运动学理论计算的正确性。所设计的扑翼机构扑动幅度达到149.8°,扭转角度达到29.9°,且“8”字型扑动规律与昆虫翅膀的运动更为相近。扑翼机构的最大尺寸不超过5.8cm,仿真发现的时间非对称扑动对气动性能有一定提升,对于微型化、轻质化、高效化扑翼飞行器的研究具有重要的参考价值。

     

  • [1] LIU H,RAVI S,KOLOMENSKIY D,et al.Biomechanics and biomimetics in insect-inspired flight systems[J].Philosophical Transactions of the Royal Society B Biological Sciences,2016,371(1704):20150390.1-20150390.11.
    [2] LIU H.An introduction to flapping wing aerodynaimcs[M].New York:Cambridge University Press,2013.
    [3] DICKINSON M H,LEHMANN F O,SANE S P.Wing rotation and the aerodynamic basis of insect flight[J].Science,1999,284(5422):1954-1960.
    [4] CONN A,BURGESS S,HYDE R,et al.From natural flyers to the mechanical realization of a flapping wing micro air vehicle[C]∥Proceedings of IEEE International Conference on Robotics and Biomimetics.Kunming:IEEE,2007:439-444.
    [5] ORLOWSKI C T,GIRARD A R.Dynamics,stability,and con trol analyses of flapping wing micro-air vehicles[J].Progress in Aerospace Sciences,2012,51:18-30.
    [6] 张永立,赵创新,徐进良,等.扑翼轨迹对空气动力的影响[J].科学通报,2006,51(6):634-640.ZHANG Yongli,ZHAO Chuangxin,XU Jinliang,et al.The effect of kinematic of a flapping wing on its aerodynamic force[J].Chinese Science Bulletin,2006,51(6):634-640.(in Chinese)
    [7] 张红梅,杨文青.微型扑翼仿生“0”字和“8”字形扑动方式气动特性研究[J].航空工程进展,2016,7(1):44-50.ZHANG Hongmei,YANG Wenqing.Investigation of “0”-figure and “8”-figures wingtip path effect on aerodynamic performance of micro flapping-wing[J].Advances in Aeronautical,2016,7(1):44-50.(in Chinese)
    [8] KARASEK M,HUA A,NAN Y,et al.Pitch and roll control mechanism for a hovering flapping wing MAV[J].International Journal of Micro Air Vehicles,2014,6(4):253-264.
    [9] PHAN H V,KANG T,PARK H C.Design and stable flight of a 21g insect-like tailless flapping wing micro air vehicle with angular rates feedback control[J].Bioinspiration and Biomimetics,2017,12(3):036006.1-036006.17.
    [10] FENELON M A A,FURUKAWA T.Design of an active flap ping wing mechanism and a micro aerial vehicle using a rotary actuator[J].Mechanism and Machine Theory,2010,45(2):137-146.
    [11] NGUYEN Q V,CHAN W L,DEBIASI M.Hybrid design and performance tests of a hovering insect-inspired flapping-wing micro aerial vehicle[J].Journal of Bionic Engineering,2016,13(2):235-248.
    [12] 谢鹏,姜洪利,周超英.一种仿生扑翼飞行器的设计及动力学分析[J].航空动力学报,2018,33(3):703-710.XIE Peng,JIANG Hongli,ZHOU Chaoying.Design and dynamic analysis of a flapping air vehicles[J].Journal of Aerospace Power,2018,33(3):703-710.(in Chinese)
    [13] PORNSIN-SIRIRAK T N,TAI Y C,HO C M,et al.Microbat:a palm-sized electrically powered ornithopter[C]∥Proceedings of the NASA/JPL Workshop on Biomorphic Robotics.Pasadena,US:NASA,2001:14-17.
    [14] DE CROON G C,GROEN M A,DE W C,et al.Design,aerodynamics and autonomy of the DelFly[J].Bioinspiration and Biomimetics,2012,7(2):025003.1-025003.36.
    [15] 徐一村,宗光华,毕树生,等.空间曲柄摇杆扑翼机构设计分析[J].航空动力学报,2009,24(2):204-208.XU Yicun,ZONG Guanghua,BI Shusheng,et al.Design and analysis of a spatial crank-rocker flapping-wing mechanism[J].Journal of Aerospace Power,2009,24(2):204-208.(in Chinese)
    [16] WANG P L,MCCARTHY J M.Design of a flapping wing mechanism to coordinate both wing swing and wing pitch[J].Journal of Mechanisms and Robotics,2018,10(2):025003.1-025003.6.
    [17] 朱保利,昂海松,郭力.一种新型三维仿生扑翼机构设计与分析[J].南京航空航天大学学报,2007,39(4):457-460.ZHU Baoli,ANG Haisong,GUO Li.Design and analysis of new 3D insect-like flapping-wing mechanism[J].Journal of Nanjing University of Aeronautics and Astronautics,2007,39(4):457-460.(in Chinese)
    [18] 黄真,赵永生,赵铁石.高等空间机构学[M].2版.北京:高等教育出版社,2014.
    [19] PHILLIPS N,KNOWLES K.Effect of flapping kinematics on the mean lift of an insect-like flapping wing[J].Journal of Aerospace Engineering,2011,225(7):723-736.
    [20] 朱建阳,蒋林,雷斌.三维仿生悬停扑翼的时间非对称扑动气动特性[J].航空动力学报,2017,32(4):858-864.ZHU Jianyang,JIANG Lin,LEI Bin.Aerodynamic performance of time asymmetric flapping of a three-dimensional flapping hovering bionic wing[J].Journal of Aerospace Power,2017,32(4):858-864.(in Chinese)
  • 加载中
计量
  • 文章访问数:  574
  • HTML浏览量:  0
  • PDF量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-04
  • 刊出日期:  2019-03-28

目录

    /

    返回文章
    返回