留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速内流道摩擦阻力分析及减阻技术研究

王帅 何国强 秦飞 魏祥庚

王帅, 何国强, 秦飞, 魏祥庚. 超声速内流道摩擦阻力分析及减阻技术研究[J]. 航空动力学报, 2019, 34(4): 908-919. doi: 10.13224/j.cnki.jasp.2019.04.020
引用本文: 王帅, 何国强, 秦飞, 魏祥庚. 超声速内流道摩擦阻力分析及减阻技术研究[J]. 航空动力学报, 2019, 34(4): 908-919. doi: 10.13224/j.cnki.jasp.2019.04.020
Research on skin-friction drag and drag reduction technics in a supersonic inner flow path[J]. Journal of Aerospace Power, 2019, 34(4): 908-919. doi: 10.13224/j.cnki.jasp.2019.04.020
Citation: Research on skin-friction drag and drag reduction technics in a supersonic inner flow path[J]. Journal of Aerospace Power, 2019, 34(4): 908-919. doi: 10.13224/j.cnki.jasp.2019.04.020

超声速内流道摩擦阻力分析及减阻技术研究

doi: 10.13224/j.cnki.jasp.2019.04.020
基金项目: 国家自然科学基金(51676165)

Research on skin-friction drag and drag reduction technics in a supersonic inner flow path

  • 摘要: 针对带有后向台阶的等截面受限空间,通过三维数值模拟开展了超声速内流道摩擦阻力分析及减阻技术研究。分析对比了飞行马赫数为5、6、6.5及7对应的燃烧室入口条件下相同质量氢气喷注、燃烧对壁面摩擦阻力的影响机制以及不同喷注压力对喷孔下游壁面剪应力的影响。研究结果表明,同等质量的氢气,低速喷注优于高速喷注(507、50.7 kPa喷注压力分别得到10%、5%左右的减阻效果)。近壁区燃烧得到接近70%的减阻效果;气流经过突扩结构之后,壁面剪应力呈现规律地不均匀变化,最大差异达100%;剪应力与密度变化趋势基本吻合。因此,发动机内流道减阻的关键在于营造近壁区低密度场;稳定、有效的减阻区域发生在靠后方的位置,但由于流动掺混、燃料的燃烧消耗,减阻效果沿流向逐渐减弱。

     

  • [1] ANDERSON J D.Hypersonic and high-temperature gas dynamics[M].2nd.ed.New York:AIAA,2006.
    [2] MITANI T,TOMIOKA S,KANDA T,et al.Scramjet performance achieved in engine tests from M 4 to M 8 flight conditions[C]∥AIAA International Space Planes and Hypersonic Systems and Technologies.Norfolk,US:AIAA,2003:1-13.
    [3] KIRCHHARTZ R,MEE D,STALKER R.Skin friction drag with boundary layer combustion in a circular combustor[C]∥AIAA International Space Planes and Hypersonic Systems and Technologies Conference.Dayton:AIAA,2008:934-939.
    [4] BARTH J E,WHEATLEY V,SMART M K.Hypersonic turbulent boundary-layer fuel injection and combustion:skin-friction reduction mechanisms[J].AIAA Journal,2013,51(9):2147-2157.
    [5] KRAVCHENKO A G,CHOI H,MOIN P.On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers[J].Physics of Fluids,1993,5(12):3307-3309.
    [6] 李舰,沈娟,李椿萱.一种可用于微吹吸流动控制技术研究的孔隙壁模型[J].中国科学:物理学 力学 天文学,2014,44(2):221-232.LI Jian,SHEN Juan,LEE Chunxuan.A micro-porous wall model for micro-blowing/suction flow system[J].Scientia Sinica:Physics,Machanica and Astronomica,2014,44(2):221-232.(in Chinese)
    [7] 葛铭纬.基于近壁相干结构的湍流减阻主动控制研究[D].北京:清华大学,2011.GE Mingwei.Study on active control of turbulence for drag reduction based on near-wall coherent structures[D].Beijing:Tsinghua University,2011.(in Chinese)
    [8] VISWANATH P R.Aircraft viscous drag reduction using riblets[J].Progress in Aerospace Sciences,2002,38(6):571-600.
    [9] RASTEGARI A,AKHAVAN R.The common mechanism of turbulent skin-friction drag reduction with super-hydrophobic micro-grooves and riblets[J].Journal of Fluid Mechanics,2018,838(1):68-104.
    [10] SATHEESH K,JAGADEESH G.Effect of electric arc discharge on hypersonic blunt body drag[R].Gottingen,Germany:26 th Internation Symposium on Shock Waves,2007.
    [11] 王宇天,张百灵,李益文,等.等离子体激波控制激波与边界层干扰流动分析数值研究[J].航空动力学报,2018,33(2):364-371.WANG Yutian,ZHANG Bailing,LI Yiwen,et al.Numerical investigation for control of shock wave and boundary layer interactions flow separation with plasma actuation[J].Journal of Aerospace Power,2018,33(2):364-371.(in Chinese)
    [12] GOYNE C P,STALKER R J,PAULL A,et al.Hypervelocity skin-friction reduction by boundary-layer combustion of hydrogen[J].Journal of Spacecraft and Rockets,2000,37(6):740-746.
    [13] STALKER R J.Control of hypersonic turbulent skin friction by boundary-layer combustion of hydrogen[J].Journal of Spacecraft and Rockets,2005,42(4):577-587.
    [14] CHAN W Y K,MEE D J,SMART M K,et al.Boundary layer combustion for viscous drag reduction in practical scramjet configurations[C]∥27th International Congress of The Aeronautical Sciences (ICAS 2010).Nice,France:ICAS,2010:1-10.
    [15] CLARK R J,BADE SHRESTHA S O.Boundary layer combustion for skin friction drag reduction in scramjet combustors[R].AIAA-2014-3667,2014.
    [16] PUDSEY A S,WHEATLEY V,BOYCE R R.Supersonic boundary-layer combustion via multiporthole injector arrays[J].AIAA Journal,2015,53(10):2890-2906.
    [17] HU Haibao,WEN Jun,BAO Luyao,et al.Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips[J].Science Advances,2017,3(9):e1603288.1-e1603288.9.
    [18] JOSEPH M H,JAMES S M,RICHARD C M,The X-51A scramjet engine flight demonstration program[R].AIAA-2008-2540,2008.
    [19] WANG Shuai,HE Guoqiang,YAN Dekun,et al.Analysis and reduction of skin-friction in a rocket-based combined-cycle engine flow path operating from Mach 1.5 to 6.0[J].Acta Astronautica,2018,151(1):357-367.
    [20] 范周琴,刘卫东,孙明波,等.超声速湍流燃烧火焰面模型理论分析[J].中国科学:信息科学,2012,42(4):443-455.FAN Zhouqin,LIU Weidong,SUN Mingbo,et al.Theoretical analysis of flamelet model for supersonic turbulent combustion[J].Science China:Technological Sciences,2012,42(4):443-455.(in Chinese)
    [21] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8):1598-1605.
    [22] WILCOX D C.Turbulence modeling for CFD[M].La Canada,US:DCW Industries Inc.,1998.
    [23] 王亚军.宽适应性RBCC亚燃模态工作过程研究[D].西安:西北工业大学,2017.WANG Yajun.Investigation of operation process in ramjet mode for wide flight Mach number operation RBCC[D].Xi’an:Northwestern Polytechnical University,2017.(in Chinese)
    [24] DAVIDENKO D,GKALP I,DUFOUR E,et al.Systematic numerical study of the supersonic combustion in an experimental combustion chamber[R].AIAA-2006-7913,2006.
    [25] FUREBY C,FEDINA E,TEGNR J.A computational study of supersonic combustion behind a wedge-shaped flameholder[J].Shock Waves,2014,24(1):41-50.
    [26] 鲁阳.超燃冲压发动机燃烧室内流动与燃烧的数值模拟[D].杭州:浙江大学,2014.LU Yang.Numerical simulation of the flow and combustion in a scramjet combustor[D].Hangzhou:Zhejiang University,2014.(in Chinese)
    [27] WANG Shuai,HE Guoqiang,QIN Fei,et al.Numerical investigation of skin-friction reduction in a supersonic channel[R].AIAA-2017-2324,2017.
    [28] TSURU T,TOMIOKA S,YAMASAKI H.Accuracy of direct skin-friction measurements in high-enthalpy supersonic flows[J].AIAA Journal,2011,49(6):1267-1271.
    [29] 张正泽,刘佩进,秦飞,等.中心支板顶角对RBCC进气道影响数值研究[J].推进技术,2018,39(4):768-775.ZHANG Zhengze,LIU Peijin,QIN Fei,et al.Numerical investigation for effects of strut angle on RBCC inlet[J].Journal of Propulsion Technology,2018,39(4):768-775.(in Chinese)
    [30] 刘晓伟.火箭基组合循环(RBCC)动力宽适用性进气道研究[D].西安:西北工业大学,2010.LIU Xiaowei.Investigation of wide applicability inlet for RBCC power[D].Xi’an:Northwestern Polytechnical University,2010.(in Chinese)
    [31] UEDA S,TAKEGOSHI M,KOUCHI T,et al.Evaluation of heat-flux on scramjet engine wall in Mach 6 flight condition[C]∥AIAA 57th International Astronautical Congress.Valencia,Spain:AIAA,2006:6344-6353.
    [32] JING Tingting,HE Guoqiang,LIN Binbin,et al.Thermal analysis of RBCC engine at ejector,ramjet and scramjet modes[R].AIAA-2016-4913,2016.
    [33] SURAWEERA M.Reduction of skin friction drag in hypersonic flow by boundary layer combustion[D].Brisbane,Australia:The University of Queensland,2006.
  • 加载中
计量
  • 文章访问数:  726
  • HTML浏览量:  1
  • PDF量:  592
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-25
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回