留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CH自由基发光的旋流火焰放热率时空特性研究

王宽亮 李飞 刘德峰 余西龙

王宽亮, 李飞, 刘德峰, 余西龙. 基于CH自由基发光的旋流火焰放热率时空特性研究[J]. 航空动力学报, 2019, 34(4): 920-928. doi: 10.13224/j.cnki.jasp.2019.04.021
引用本文: 王宽亮, 李飞, 刘德峰, 余西龙. 基于CH自由基发光的旋流火焰放热率时空特性研究[J]. 航空动力学报, 2019, 34(4): 920-928. doi: 10.13224/j.cnki.jasp.2019.04.021
Study of the temporal and spatial characteristics for swirling flame heat release rate based on CH chemiluminescence[J]. Journal of Aerospace Power, 2019, 34(4): 920-928. doi: 10.13224/j.cnki.jasp.2019.04.021
Citation: Study of the temporal and spatial characteristics for swirling flame heat release rate based on CH chemiluminescence[J]. Journal of Aerospace Power, 2019, 34(4): 920-928. doi: 10.13224/j.cnki.jasp.2019.04.021

基于CH自由基发光的旋流火焰放热率时空特性研究

doi: 10.13224/j.cnki.jasp.2019.04.021
基金项目: 国家自然科学基金(11372329);航空科学基金(20173432002);中国科学院科研仪器设备研制项目(YZ201637)

Study of the temporal and spatial characteristics for swirling flame heat release rate based on CH chemiluminescence

  • 摘要: 对不同工况下CH4/air旋流火焰的放热率在时间上的热声振荡现象和空间的三维形态转变两方面进行了研究。在燃烧形态转变方面,由于旋流火焰的复杂流场分布特性,采用基于化学自发光的三维计算层析技术(3D-CTC),测量了雷诺数从5 000到20 000的三个工况下旋流燃烧的CH*发光三维火焰结构。以此表征放热率的三维分布,实现对旋流火焰放热空间形态的测量。该诊断方法通过对旋流火焰发光在8个视角下的二维成像,结合层析重建算法得到其三维CH*分布信息。为验证重建保真度,将重建后结果二维可视化与高速摄影下的二维时均结果进行对比,结果表明重建误差在5%以内。研究中,分析了不同雷诺数下放热率的空间变化规律,结果显示所有实验工况下放热率的垂直于喷嘴方向的变化程度比沿喷嘴轴向的要剧烈;而随着雷诺数增加,最大的放热区表现出了明显的向后推进趋势。在旋流燃烧的热声振荡方面,利用CH*的二维高速摄影,对旋流燃烧的放热率不稳定性进行研究,发现放热率的振荡频率随着雷诺数的增大逐渐增加。

     

  • [1] WEIGAND P,MEIER W,DUAN X R,et al.Investigations of swirl flames in a gas turbine model combustor:Ⅰ flow field,structures,temperature,and species distributions[J].Combustion and Flame,2006,144(1/2):205-224.
    [2] SEE Y C,IHME M.Large eddy simulation of a partially-premixed gas turbine model combustor[J].Proceedings of the Combustion Institute,2015,35(2):1225-1234.
    [3] 黄群星,余渡江,蔡旭,等.旋流火焰温度及烟黑颗粒浓度分布的联合重建研究[J].中国电机工程学报,2013,33(20):80-87.HUANG Qunxing,YU Dujiang,CAI Xu,et al.Temperature and soot volume fraction distributions reconstruction for swirling flame[J].Proceedings of the CSEE,2013,33(20):80-87.(in Chinese)
    [4] STOPPER U,AIGNER M,MEIER W,et al.Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques[J].Journal of Engineering for Gas Turbines and Power,2008,131(2):021504.1-021504.8.
    [5] VOIGT T,HABISREUTHER P,ZARZALIS N.Simulation of vorticity driven flame instability using a flame surface density approach including markstein number effects[R].ASME Paper GT2009-59331,2009.
    [6] STHR M,SADANANDAN R,MEIER W.Phase-resolved characterization of vortex-flame interaction in a turbulent swirl flame[J].Experiments in Fluids,2011,51(4):1153-1167.
    [7] PALIES P,DUROX D,SCHULLER T,et al.The combined dynamics of swirler and turbulent premixed swirling flames[J].Combustion and Flame,2010,157(9):1698-1717.
    [8] LEE H J,KIM K T,LEE J G,et al.An experimental study on the coupling of combustion instability mechanisms in a lean premixed gas turbine combustor[R].ASME Paper GT2009-60009,2009.
    [9] 钟迪,朱民,李启明,等.燃气轮机燃烧室内热声反问题求解方法研究[J].中国电机工程学报,2018,38(1):195-203.ZHONG Di,ZHU Min,LI Qiming,et al.Study of solving method on the inverse thermo-acoustic problem in the combustion chamber of gas turbine[J].Proceedings of the CSEE,2018,38(1):195-203.(in Chinese)
    [10] BOXX I,STHR M,CARTER C,et al.Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor[J].Combustion and Flame,2010,157(8):1510-1525.
    [11] RENAUD A,DUCRUIX S,SCOUFLAIRE P,et al.Flame shape transition in a swirl stabilised liquid fueled burner[J].Proceedings of the Combustion Institute,2015,35(3):3365-3372.
    [12] FLOYD J,KEMPF A M.Computed tomography of chemiluminescence (CTC):high resolution and instantaneous 3-D measurements of a Matrix burner[J].Proceedings of the Combustion Institute,2011,33(1):751-758.
    [13] KANG M W,WU Y,MA L.Fiber-based endoscopes for 3D combustion measurements:view registration and spatial resolution[J].Combustion and Flame,2014,161(12):3063-3072.
    [14] CAI Weiwei,LI Xuesong,LI Fei,et al.Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence[J].Optics Express,2013,21(6):7050-7064.
    [15] CAI Weiwei,LI Xuesong,MA Llin.Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging[J].Applied Optics,2013,52(33):8106-8116.
    [16] WANG Jia,SONG Yang,LI Zhenhua,et al.Multi-directional 3D flame chemiluminescence tomography based on lens imaging[J].Optics Letters,2015,40(7):1231-1234.
    [17] WANG Kuanliang,LI Fei,ZENG Hui,et al.Three-dimensional flame measurements with large field angle[J].Optics Express,2017,25(18):21008-21018.
    [18] MOHRI K,GRS S,SCHLER J,et al.Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence[J].Applied Optics,2017,56(26):7385-7395.
    [19] STEINBERG A M,BOXX I,STHR M,et al.Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor[J].Combustion and Flame,2010,157(12):2250-2266.
  • 加载中
计量
  • 文章访问数:  637
  • HTML浏览量:  2
  • PDF量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-07
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回