留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

比例与非比例加载下30CrMnSiA钢多轴高周疲劳失效分析

亓新新 张婷 时新红 张建宇 费斌军

亓新新, 张婷, 时新红, 张建宇, 费斌军. 比例与非比例加载下30CrMnSiA钢多轴高周疲劳失效分析[J]. 航空动力学报, 2019, 34(6): 1237-1245. doi: 10.13224/j.cnki.jasp.2019.06.007
引用本文: 亓新新, 张婷, 时新红, 张建宇, 费斌军. 比例与非比例加载下30CrMnSiA钢多轴高周疲劳失效分析[J]. 航空动力学报, 2019, 34(6): 1237-1245. doi: 10.13224/j.cnki.jasp.2019.06.007
Analysis on multiaxial high-cycle fatigue failure of 30CrMnSiA steel under proportional and non-proportional loading[J]. Journal of Aerospace Power, 2019, 34(6): 1237-1245. doi: 10.13224/j.cnki.jasp.2019.06.007
Citation: Analysis on multiaxial high-cycle fatigue failure of 30CrMnSiA steel under proportional and non-proportional loading[J]. Journal of Aerospace Power, 2019, 34(6): 1237-1245. doi: 10.13224/j.cnki.jasp.2019.06.007

比例与非比例加载下30CrMnSiA钢多轴高周疲劳失效分析

doi: 10.13224/j.cnki.jasp.2019.06.007
基金项目: 国家自然科学基金(11172021)

Analysis on multiaxial high-cycle fatigue failure of 30CrMnSiA steel under proportional and non-proportional loading

  • 摘要: 为了分析比例与非比例加载下,30CrMnSiA钢的多轴高周疲劳的失效规律。通过对30CrMnSiA钢材料开展比例与非比例(δ=90°)加载下的多轴高周疲劳试验,研究了应力幅比和相位差对疲劳寿命、断口特征及裂纹起裂角度的影响。试验结果表明,对于比例与非比例加载,随着应力幅比的增大,多轴疲劳寿命逐渐增加。对疲劳断口分析发现,裂纹萌生于试件表面,断口有明显的疲劳源区、扩展区和瞬断区,不同加载路径下的试件断口形式有明显差异。通过对起裂角度的分析发现,应力幅比大于0.25时表面裂纹有明显的第Ⅰ阶段向第Ⅱ阶段的转变,且第Ⅰ阶段沿着接近最大剪应力幅值平面方向扩展,第Ⅱ阶段沿着接近最大正应力平面方向扩展。此外,对典型试件的疲劳断口及表面扩展路径进行了分析,研究表明多轴疲劳试验试件裂纹的特征比值在0.3~0.5之间,且裂纹沿深度方向扩展至300 μm时占总寿命的85%以上。

     

  • [1] KAROLCZUK A,MACHA E.A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials[J].International Journal of Fatigue,2005,134(3):267-304.
    [2] WANG C,SHANG D G,WANG X W.A new multiaxial high-cycle fatigue criterion based on the critical plane for ductile and brittle materials[J].Journal of Materials Engineering and Performance,2014,24(2):816-824.
    [3] KAROLCZUK A,KLUGER K,AGODA T.A correction in the algorithm of fatigue life calculation based on the critical plane approach[J].International Journal of Fatigue,2016,83(2):174-183.
    [4] OHKAWA I,TAKAHASHI H,MORIWAKI M.A study on fatigue crack growth under out-of-phase combined loadings[J].Fatigue and Fracture of Engineering Materials and Structures,1997,20:929-940.
    [5] VU Q H,NADOT Y,HALM D.High cycle fatigue crack paths in C35 steel under complex loading[R].Vicenza,Italy:International Conference of Crack Paths,2009.
    [6] MILLER K J,IBRAHIM M F E.Damage accumulation during initiation and short crack growth regimes[J].Fatigue and Fracture of Engineering Materials and Structures,1981,4(3):263-277.
    [7] HUA C T,SOCIE D F.Fatigue damage in 1045 steel under constant amplitude biaxial loading[J].Fatigue and Fracture of Engineering Materials and Structures,1985,8(2):101-114.
    [8] VERREMAN Y,GUO H.High-cycle fatigue mechanisms in 1045 steel under non-proportional axial-torsional loading[J].Fatigue and Fracture of Engineering Materials and Structures,2007,30(10):932-946.
    [9] CAMPAGNOLO A,MENEGHETTI G,BERTO F.Calibration of the potential drop method by means of electric FE analyses and experimental validation for a range of crack shapes[J].Fatigue and Fracture of Engineering Materials and Structures,2018,41(11):2272-2287.
    [10] MENEGHETTI G,CAMPAGNOLO A,BERTO F.Notched Ti-6Al-4V titanium bars under multiaxial fatigue:Synthesis of crack initiation life based on the averaged strain energy density[J].Theoretical and Applied Fracture Mechanics,2018,96:509-533.
    [11] 陈亚军,王先超,王付胜.不同应力幅比加载下2A12铝合金的多轴疲劳性能[J].材料工程,2017,45(9):136-142.CHEN Yajun,WANG Xianchao,WANG Fusheng.Multiaxial fatigue properties of 2A12 aluminum alloy under different stress amplitude ratio loading[J].Journal of Material Engineering,2017,45(9):136-142.(in Chinese)
    [12] 陈亚军,王先超,王付胜.2A12铝合金的多轴加载疲劳行为[J].材料工程,2017,45(8):68-75.CHEN Yajun,WANG Xianchao,WANG Fusheng.Fatigue behavior of 2A12 aluminum alloy under multiaxial loading[J].Journal of Material Engineering,2017,45(8):68-75.(in Chinese)
    [13] 陈亚军,王先超,王付胜.相位角加载条件下2A12铝合金的多轴疲劳失效行为[J].材料导报,2017,31(14):147-152.CHEN Yajun,WANG Xianchao,WANG Fusheng.Failure behavior of multiaxial fatigue for 2A12 aluminum alloy subject to different angle loading conditions[J].Materials Review,2017,31(14):147-152.(in Chinese)
    [14] YANG F P,YUAN X G,KUANG Z B.Influence of loading path on fatigue crack growth under multiaxial loading condition[J].Fatigue and Fracture of Engineering Materials and Structures,2012,35(5):425-432.
    [15] NAKAMURA H,TAKANASHI M,ITOH T.Fatigue crack initiation and growth behavior of Ti-6Al-4V under nonproportional multiaxial loading[J].International Journal of Fatigue,2011,33(7):842-848.
    [16] ZHANG J,SHI X,BAO R.Tension-torsion high-cycle fatigue failure analysis of 2A12-T4 aluminum alloy with different stress ratios[J].International Journal of Fatigue,2011,33(8):1066-1074.
    [17] AGBESSI K,SAINTIER N,PALIN-LUC T.Microstructure based study of the crack initiation mechanisms in pure copper under high cycle multiaxial fatigue loading conditions[J].Procedia Structural Integrity,2016,2:3210-3217.
    [18] 刘天奇,时新红,张建宇.平均应力对30CrMnSiA钢多轴疲劳失效的影响[J].航空动力学报,2018,33(12):2972-2980.LIU Tianqi,SHI Xinhong,ZHANG Jianyu.Effect of mean stress on multiaxial fatigue failure of 30CrMnSiA steel[J].Journal of Aerospace Power,2018,33(12):2972-2980.(in Chinese)
    [19] 时新红,鲍蕊,张建宇.多轴高周疲劳失效准则的对比分析[J].航空动力学报,2008,23(11):2007-2015.SHI Xinhong,BAO Rui,ZHANG Jianyu.Comparative study of multiaxial high-cycle fatigue prediction criteria[J].Journal of Aerospace Power,2008,23(11):2007-2015.(in Chinese)
  • 加载中
计量
  • 文章访问数:  1158
  • HTML浏览量:  2
  • PDF量:  1492
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-20
  • 刊出日期:  2019-06-28

目录

    /

    返回文章
    返回