留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维实体建模的刷式密封传热机理数值研究

孙丹 李国勤 艾延廷 刘永泉 战鹏 信琦

孙丹, 李国勤, 艾延廷, 刘永泉, 战鹏, 信琦. 基于三维实体建模的刷式密封传热机理数值研究[J]. 航空动力学报, 2019, 34(8): 1633-1643. doi: 10.13224/j.cnki.jasp.2019.08.001
引用本文: 孙丹, 李国勤, 艾延廷, 刘永泉, 战鹏, 信琦. 基于三维实体建模的刷式密封传热机理数值研究[J]. 航空动力学报, 2019, 34(8): 1633-1643. doi: 10.13224/j.cnki.jasp.2019.08.001
Numerical study on heat transfer mechanism of brush seal based on three-dimensional solid modeling[J]. Journal of Aerospace Power, 2019, 34(8): 1633-1643. doi: 10.13224/j.cnki.jasp.2019.08.001
Citation: Numerical study on heat transfer mechanism of brush seal based on three-dimensional solid modeling[J]. Journal of Aerospace Power, 2019, 34(8): 1633-1643. doi: 10.13224/j.cnki.jasp.2019.08.001

基于三维实体建模的刷式密封传热机理数值研究

doi: 10.13224/j.cnki.jasp.2019.08.001
基金项目: 国家自然科学基金(51675351); 中国博士后科学基金(2018M633572); 辽宁省高等学校创新人才支持计划项目(LR2016033)

Numerical study on heat transfer mechanism of brush seal based on three-dimensional solid modeling

  • 摘要: 建立了基于三维实体建模的刷式密封传热特性求解模型,在验证数值模型准确性的基础上,分析了刷式密封流场与温度场分布特性,研究了压比、转速、干涉量和热流密度对刷丝最高温度的影响,揭示了刷式密封的传热机理。结果表明:高温区主要集中在末排刷丝与转子面接触位置,刷丝的最高温度随着压比、转速、干涉量和热流密度增加而增大,其中干涉量对刷丝最高温度的影响最为明显。当干涉量从0.1 mm增至0.7 mm时,刷丝的最高温度上升1.61倍;刷式密封热量的主要来源为刷丝与转子表面摩擦产生的热量,其传热形式包括导热和对流换热,摩擦热量通过导热形式进入刷丝和转子,当刷丝与转子之间的接触力增加时,摩擦热量增大,刷丝的最高温度升高,摩擦热量通过对流换热形式在流体和固体之间进行传递,热量散失主要形式为泄漏气流带走部分热量。

     

  • [1] 李军,晏鑫,宋立明,等.透平机械密封技术研究进展[J].热力透平,2008,37(3):141-148.LI Jun,YAN Xin,SONG Liming,et al.A review of sealing technologies in turbomachinery[J].Thermal Turbine,2008,37(3):141-148.(in Chinese)
    [2] 柴保桐,傅行军.刷式密封流场和温度场数值模拟[J].润滑与密封,2016,41(2):121-125.CHAI Baotong,FU Xingjun.Numerical simulation on flow and temperature distributions of brush seals[J].Lubrication Engineering,2016,41(2):121-125.(in Chinese)
    [3] 邱波,李军.刷式密封流动与换热及力学特性的研究进展[J].热力透平,2013,42(3):141-149.QIU Bo,LI Jun.A review of flow and heat transfer,mechanical characteristics of brush seals[J].Thermal Turbine,2013,42(3):141-149.(in Chinese)
    [4] HENDRICKS R C,SCHLUMBERGER S,BRAUN M J,et al.A bulk flow model of a brush seal system[R].ASME Paper 91-GT-325,1991.
    [5] DEMIROGLU M,TICHY J A.An investigation of heat generation characteristics of brush seals[R].ASME Paper GT2007-28043,2007.
    [6] DOGU Y,AKSIT M F.Brush seal temperature distribution analysis[J].Engineering for Gas Turbines and Power,2006,128(3):599-609.
    [7] 李理科,王之栎,宋飞,等.刷式密封温度场数值研究[J].航空动力学报,2010,25(5):1018-1024.
    LI Like,WANG Zhili,SONG Fei,et al.Numerical investigation of temperature field in brush seals[J].Journal of Aerospace Power,2010,25(5):1018-1024.(in Chinese)
    [8] 丁水汀,陶智,徐国强.刷式封严流动和换热的数值模拟[J].推进技术,1999,20(1):65-67.DING Shuiting,TAO Zhi,XU Guoqiang.Numerical simulation on fluid flow and heat transfer of a brush seal configuration[J].Journal of Propulsion Technology,1999,20(1):65-67.(in Chinese)
    [9] 邱波,李军.刷式密封传热特性研究[J].西安交通大学学报,2011,45(9):94-100.QIU Bo,LI Jun.Investigation on the heat transfer characteristics of brush seals[J].Journal of Xi'an Jiaotong University,2011,45(9):94-100.(in Chinese)
    [10] 邱波,李军,陈春新,等.基于CFD和FEM方法的刷式密封传热特性研究[J].工程热物理学报,2012,33(12):2067-2071.QIU Bo,LI Jun,CHEN Chunxin,et al.Investigations on the heat transfer characteristics of brush seals based on computational fluid dynamics and finite element analysis[J].Journal of Engineering Thermophysics,2012,33(12):2067-2071.(in Chinese)
    [11] 邱波,李军,丰镇平.考虑刷丝变形的刷式密封摩擦热效应研究[J].工程热物理学报,2013,34(11):2030-2034.QIU Bo,LI Jun,FENG Zhenping.Investigations on fritional heat generation of brush seals with consideration of bristle deflections[J].Journal of Engineering Thermophysics,2013,34(11):2030-2034.(in Chinese)
    [12] 张元桥,闫嘉超,李军.刷式密封泄漏和传热特性影响因素的数值研究[J].推进技术,2018,39(1):116-124.ZHANG Yuanqiao,YAN Jiachao,LI Jun.Numerical investigations on influence factors of leakage flow and heat transfer characteristics of brush seal[J].Journal of Propulsion Technology,2018,39(1):116-124.(in Chinese)
    [13] 孙丹,刘宁宁,胡广阳,等.考虑刷丝变形的刷式密封流场特性与力学特性流固耦合研究[J].航空动力学报,2016,31(10):2544-2553.SUN Dan,LIU Ningning,HU Guangyang,et al.Fluid-structure interaction investigation on the flow field and mechanical characteristic in brush seals with bristle deflections[J].Journal of Aerospace Power,2016,31(10):2544-2553.(in Chinese)
    [14] 孙丹,白伟钢,刘宁宁,等.基于能量法的刷式密封刷丝颤振流固耦合研究[J].推进技术,2018,39(3):619-629.SUN Dan,BAI Weigang,LIU Ningning,et al.Fluid-solid interaction study of brush seals bristle flutter with energy method[J].Journal of Propulsion Technology,2018,39(3):619-629.(in Chinese)
    [15] 黄首清,索双富,李永健,等.刷式密封流场和温度场的3维数值计算[J].清华大学学报(自然科学版),2014,54(6):805-810.HUANG Shouqing,SUO Shuangfu,LI Yongjian,et al.Numerical predictions of the flow and temperature distributions in a three dimensional brush seal model[J].Journal of Tsinghua University (Science and Technology),2014,54(6):805-810.(in Chinese)
    [16] FELLENSTEIN J A,DELLACORTE C,MOORE K D,et al.High temperature brush seal tuft gesting of selected nickel-chrome and cobalt-chrome superalloys[R].NASA TM-107497,1997.
    [17] 刘占生,叶建槐.刷式密封接触动力学特性研究[J].航空动力学报,2002,17(5):635-640.LIU Zhansheng,YE Jianhuai.Research on structural dynamic characteristics of brush seals[J].Journal of Aerospace Power,2002,17(5):635-640.(in Chinese)
    [18] DEMIROGLU M,GURSOY M,TICHY J A.An investigation of tip force characteristics of brush seals[R].ASME Paper GT2007-28042,2007.
    [19] CRUDGINGTON P F,BOWSHER A,LLOYD D.Bristle angle effects on brush seal contact pressures[R].AIAA-2009-5168,2009.
    [20] YAKHOT V,ORSZAG S A.Renormalization group analysis of turbulence.I.Basic theory[J].Journal of Scientific Computing,1986,1(1):3-51.
    [21] 孔繁余,陈浩,王婷,等.基于流固耦合的减压塔底泵泵体强度分析[J].机械工程学报,2013,49(2):159-164.KONG Fanyu,CHEN Hao,WANG Ting,et al.Strength analysis of decompression tower bottom pump's pump casing based on fluid-solid coupling[J].Journal of Mechanical Engineering,2013,49(2):159-164.(in Chinese)
  • 加载中
计量
  • 文章访问数:  565
  • HTML浏览量:  3
  • PDF量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-20
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回