留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过载环境下1.002 mm管内流动沸腾传热的实验

方贤德 李国华 袁宇良 李定坤 郑玲

方贤德, 李国华, 袁宇良, 李定坤, 郑玲. 过载环境下1.002 mm管内流动沸腾传热的实验[J]. 航空动力学报, 2019, 34(8): 1644-1651. doi: 10.13224/j.cnki.jasp.2019.08.002
引用本文: 方贤德, 李国华, 袁宇良, 李定坤, 郑玲. 过载环境下1.002 mm管内流动沸腾传热的实验[J]. 航空动力学报, 2019, 34(8): 1644-1651. doi: 10.13224/j.cnki.jasp.2019.08.002
Experiment on flow boiling heat transfer in 1.002 mm tube under hypergravity[J]. Journal of Aerospace Power, 2019, 34(8): 1644-1651. doi: 10.13224/j.cnki.jasp.2019.08.002
Citation: Experiment on flow boiling heat transfer in 1.002 mm tube under hypergravity[J]. Journal of Aerospace Power, 2019, 34(8): 1644-1651. doi: 10.13224/j.cnki.jasp.2019.08.002

过载环境下1.002 mm管内流动沸腾传热的实验

doi: 10.13224/j.cnki.jasp.2019.08.002
基金项目: 国家自然科学基金(51576099, 51176074); 江苏高校优势学科建设工程资助项目

Experiment on flow boiling heat transfer in 1.002 mm tube under hypergravity

  • 摘要: 通过地面离心转台模拟过载,对R134a在内径为1.002 mm管内的沸腾流动传热进行了实验研究。结果表明:管内流动沸腾传热特性随着重力的变化而变化;在重力为3.16g(g=9.8 m/s2)时,过载下的传热系数比常重力下的大;随着过载的增加,大多数情况下传热系数先增大后减小,转折点在1.1g~1.4g;在3.16g时,部分传热系数开始出现低于1g时的情况;干度对传热系数的影响特性因重力不同而不同。研究了常重力下流动沸腾预测模型对过载环境的适应性,鉴别出了对过载数据预测较好的公式。

     

  • [1] CELATA G P,CUMO M,GERVASI M M,et al.Flow pattern analysis of flow boiling in microgravity[J].Multiphase Science and Technology,2007,19(2):183-210.
    [2] PAPELL S S.An instability effect on two-phase heat transfer for subcooled water flowing under conditions of zero gravity[R].NASA Tech Note TN D-2259,1964.
    [3] OHTA H.Experiments on microgravity boiling heat transfer by using transparent heaters[J].Nuclear Engineering and Design,1997,175(1/2):167-180.
    [4] OHTA H.Heat transfer mechanisms in microgravity flow boiling[J].Annals of the New York Academy of Sciences,2002,974:463-480.
    [5] LUCIANI S,BRUTIN D,LE NILIOT C,et al.Boiling heat transfer in a vertical microchannel:local estimation during flow boiling with a non intrusive method[J].Multiphase Science and Technology,2009,21(4):297-328.
    [6] BRUTIN D,AJAEV V S,TADRIST L.Pressure drop and void fraction during flow boiling in rectangular minichannels in weightlessness[J].Applied Thermal Engineering,2013,51(1/2):1317-1327.
    [7] LUCIANI S,BRUTIN D,LE NILIOT C,et al.Flow boiling in minichannels under normal,hyper-,and microgravity:local heat transfer analysis using inverse methods[J].Journal of Heat Transfer,2008,130(10):101502.1-101502.13.
    [8] FANG X,LI G,LI D,et al.An experimental study of R134a flow boiling heat transfer in a 4.07 mm tube under Earth's gravity and hypergravity[J].International Journal of Heat Mass Transfer,2015,87:399-408.
    [9] XU Y,FANG X,LI G,et al.An experimental investigation of flow boiling heat transfer and pressure drop of R134a in a horizontal 2.168 mm tube under hypergravity:Part Ⅱ heat transfer coefficient[J].International Journal of Heat Mass Transfer,2015,80:597-604.
    [10] 姚秋萍,宋保银,赵枚.动载对管内沸腾两相流传热特性的影响[J].航空动力学报,2010,25(1):28-34.YAO Qiuping,SONG Baoyin,ZHAO Mei.Effects of dynamic load on the heat transfer characteristics of two-phase pipe boiling flow[J].Journal of Aerospace Power,2010,25(1):28-34.(in Chinese)
    [11] 单绍荣,宋保银,马启成.侧载和管径对管内沸腾两相流性能影响实验[J].航空动力学报,2011,26(11):2522-2527.SHAN Shaorong,SONG Baoyin,MA Qicheng.Experimental on the effects of side load and pipe diameter on the characteristics of boiling two-phase pipe flow[J].Journal of Aerospace Power,2011,26(11):2522-2527.(in Chinese)
    [12] LEMMON E W,HUUBER M L,MCLINDEN M O.REFPROP,Version 9.1[EB/OL].[2018-12-03].https:∥www.nist.gov/sites/default/files/documents/srd/REFPROP9.PDF.
    [13] KLINE S J,MCCLINTOCK F A.Describing uncertainties in single-sample experiments[J].Mechanical Engineering,1953,75(1):3-8.
    [14] THOME J R,DUPONT V,JACOBI A M.Heat transfer model for evaporation in microchannels:Part Ⅰ presentation of the model[J].International Journal of Heat Mass Transfer,2004,47(14/15/16):3375-3385.
    [15] CHENG L,RIBATSKI G,WOJTAN L,et al.New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes[J].International Journal of Heat Mass Transfer,2006,49(21/22):4082-4094.
    [16] CHOI B,FUJII T,ASANO H,et al.A study of gas-liquid two-phase flow in a horizontal tube under microgravity[J].Annals of the New York Academy of Sciences,2002,974:316-327.
    [17] NARCY M,DE MALMAZET E,COLIN C.Flow boiling in tube under normal gravity and microgravity conditions[J].International Journal of Multiphase Flow,2014,60:50-63.
    [18] FANG X,ZHUANG F,CHEN C,et al.Saturated flow boiling heat transfer:Review and assessment of prediction methods[J].Heat and Mass Transfer,2019,55(1):197-222.
    [19] FANG X,WU Q,YUAN Y.A general correlation for saturated flow boiling heat transfer in channels of various sizes and flow directions[J].International Journal of Heat Mass Transfer,2017,107:972-981.
    [20] BERTSCH S S,GROLL E A,GARIMELLA S V.A composite heat transfer correlation for saturated flow boiling in small channels[J].International Journal of Heat Mass Transfer,2009,52(7/8):2110-2118.
    [21] GUNGOR K E,WINTERTON R H S.Simplified general correlation for saturated flow boiling and comparisons of correlations with data[J].Chemical Engineering Research and Design,1987,65(2):148-156.
    [22] LIU Z,WINTERTON R H S.A general correlation for saturated and subcooled flow boiling in tubes and annuli,based on a nucleate pool boiling equation[J].International Journal of Heat Mass Transfer,1991,34(11):2759-2766.
    [23] LAZAREK G M,BLACK S H.Evaporative heat transfer pressure drop and critical heat flux in a small vertical tube with R-113[J].International Journal of Heat Mass Transfer,1982,25(7):945-960.
    [24] FANG X.A new correlation of flow boiling heat transfer coefficients based on R134a data[J].International Journal of Heat Mass Transfer,2013,66:279-283.
    [25] FANG X,ZHOU Z,WANG H.Heat transfer correlation for saturated flow boiling of water[J].Applied Thermal Engineering,2015,76(5):147-156.
    [26] FANG X.A new correlation of flow boiling heat transfer coefficients for carbon dioxide[J].International Journal of Heat Mass Transfer,2013,64:802-807.
  • 加载中
计量
  • 文章访问数:  463
  • HTML浏览量:  2
  • PDF量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回