Numerical calculation of flow characteristics of hybrid vortex reduce structure combing de-swirl inlet
-
摘要: 提出了一种将反旋进气孔与减涡管相结合的混合式减涡器,数值研究了其减阻引气效果,分析了旋转雷诺数、无量纲入口质量流量对内部流场结构和压力损失的影响。研究发现:在混合式减涡器引气结构中,静压沿径向平缓降低,在周向分布均匀;随着无量纲入口质量流量或旋转雷诺数的增加,引气结构总压降呈现单调上升的趋势,其中在高旋转雷诺数、低无量纲质量流量工况下具有突出的减阻性能,其对应的湍流参数为0.106 4~0.324 5。相比于简单盘腔,反旋进气孔式及管式减涡器的压力损失分别降低62.5%、60.5%,混合式减涡器可降低80.4%,体现出良好的减阻引气效果。Abstract: A hybrid vortex reducer combining the de-swirl inlet hole and the vortex tubes was proposed, the effect of drag reduction and bleed air was numerically studied, and the effects of rotating Reynolds number and dimensionless inlet mass flow on internal flow field structure and pressure loss were analyzed. It was found that in the inflow structure of the hybrid vortex reducer, the static pressure decreased gently in the radial direction and was evenly distributed in the circumferential direction. With the ascension of the dimensionless inlet mass flow or the rotating Reynolds number, the total pressure drop of the inflow structure showed a monotonous increasing trend. Especially, under the conditions of higher rotating Reynolds number and lower dimensionless mass flow, outstanding drag reduction was observed and the corresponding turbulence parameter range of 0.106 4-0.324 5 was obtained. Compared with the simple disk cavity, the pressure loss of the de-swirl vortex reducer and the tube vortex reducer was reduced by 62.5% and 60.5%, respectively, and the hybrid vortex reducer can reduce the pressure loss by 80.4%, showing a better drag reduction.
-
Key words:
- rotating disc cavity /
- bleed air system /
- hybrid vortex reducer /
- de-swirl /
- pressure loss /
- flow characteristics
-
[1] 秦敏,郭文.旋转盘腔流动与换热试验准则[J].燃气涡轮试验与研究,2014,27(2):34-36,53.QIN Min,GUO Wen.Test criteria for flow and heat transfer in rotating disk cavity[J].Gas Turbine Test and Research,2014,27(2):34-36,53.(in Chinese) [2] 林宏镇,汪火光,蒋章焰.高性能航空发动机传热技术.[M].北京:国防工业出版社,2005. [3] 赵斌,李绍斌,周盛,等.航空发动机空气系统气源引气的研究进展[J].航空工程进展,2012,3(4):476-485.ZHAO Bin,LI Shaobin,ZHOU Sheng,et al.Research progress of air source air sequestration in aero engine air system[J].Progress in Aeronautical Engineering,2012,3(4):476-485.(in Chinese) [4] FIROUZIAN M,OWEN J M,PINCOMBE J R.Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid:Part 1 the flow structure[J].Heat and Fluid Flow,1985,6(4):228-234. [5] 邓舒情.压气机旋转盘腔流动与换热性能研究[D].北京:北京理工大学,2016.DENG Shuqing.Research on flow and heat transfer performance of compressor rotating disk cavity[D].Beijing:Beijing Institute of Technology,2016.(in Chinese) [6] 吴丽军,陈潇,邓双国,等.减流阻特性计算分析[J].燃气轮机技术,2014,27(3):37-43.WU Lijun,CHEN Xiao,DENG Shuangguo,et al.Calculation and analysis of flow resistance characteristics[J].Gas Turbine Technology,2014,27(3):37-43.(in Chinese) [7] DU Xiaoqin,ZHU Huiren,ZHANG Zongwei.Numerical study on varied vortex reducer configurations for the flow path optimization in compressor cavities[R].ASME Paper GT2011-45975,2011. [8] CHEW J W,FARTHING P R,OWEN J M.The use of fins to reduce the pressure drop in a rotating cavity with a radial inflow[J].Journal of Turbomachinery,1989,111(3):349-356. [9] DIMITRIE N,PFITZNER M.Secondary air systems in aeroengines employing vortex reducers[R]New Orleans,Louisiana,US:ASME Turbo Expo:Power for Land,Sea & Air,2001. [10] FRIEDL W H,PEITSCH D,NEGULESCU D,et al.Improvement of high pressure turbine air systems by de-swirl nozzles[C]∥Proceedings of the 22nd Computers and Information in Engineering Conference.Montreahl,Canada:American Society of Mechanical Engineers,2002:331-336. [11] PFITZNER M,WASCHKA W.Development of an aeroengine secondary air system employing vortex reducers[R].Harogate,UK:the 22nd International Council of Aeronautical Sciences (ICAS) Congress,2000. [12] FARTHING P R,CHEW J W,OWEN J M.The use of de-swirl nozzles to reduce the pressure drop in a rotating cavity with radial inflow[R].ASME Paper 89-GT-184,1989. [13] 陈阳春,王锁芳.有去旋进气共转盘腔内流动换热数值模拟[J].航空动力学报,2010,25(8):1746-1752.CHEN Yangchun,WANG Suofang.Numerical simulation of flow and heat transfer in a rotating disk with de-rotating air intake[J].Journal of Aerospace Power,2010,25(8):1746-1752.(in Chinese) [14] 赵秋月,娄德仓,郭文,等.旋转盘腔去旋系统数值模拟[J].燃气涡轮试验与研究,2014,27(5):43-48.ZHAO Qiuyue,LOU Decang,GUO Wen,et al.Numerical simulation of rotating disk cavity derotation system[J].Gas Turbine Experiment and Research,2014,27(5):43-48.(in Chinese) [15] ANDRE G,WIELAND U,ERWIN K,et al.Experimental analysis of varied vortex reducer configurations for the internal air system of jet engine gas turbines[R].ASME Paper GT2008-50738,2008. [16] DLETER P,RELNHARD N.Numerical investigation of vortex reducer flows in the high compressor of modern aeroengine[R].ASME Paper GT2002-30674,2002. [17] 单文娟.发动机内/外部引气结构流动特性研究[D].南京:南京航空航天大学,2014.SHAN Wenjuan.Study on flow characteristics of internal/external bleed air structure of engine[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2014.(in Chinese) [18] CHEN X,FENG Y,WU L.The experiment/tal investigations of centripetal air bleed with tubed vortex reducer for secondary air system in gas turbine[R].Düsseldorf,Germany:ASME Turbo Expo,2014. [19] LIANG Z,LUO X,FENG Y,et al.Experimental investigation of pressure losses in a co-rotating cavity with radial inflow employing tubed vortex reducers with varied nozzles[J].Experimental Thermal and Fluid Science,2015,66:304-315. [20] CFM International.LEAP-1B training manual[R].[S.l.]:CFM International,2017. [21] FARTHING P R,OWEN J M.De-swirled radial inflow in a ro-tating cavity[J].International Journal of Heat and Fluid Flow,1991,12(1):63-70. [22] STRELETS M.Detached eddy simulation of massively separated flows[R].Reno,NV:the 39th Aerospace Sciences Meeting and Exhibit,2000. [23] FIROUZIAN M,OWEN J M,PINCOMBE J R,et al.Flow and heat transfer in a rotating cavity with a radial inflow of fluid:Part Ⅱ velocity,pressure and heat transfer measurements[J].International Journal of Heat and Fluid Flow,1986,7(1):21-27. [24] 黄爱霞,王锁芳.反旋进气盘腔内流动与换热的数值模拟[J].航空动力学报,2008,23(9):1684-1688.HUANG Aixia,WANG Suofang.Numerical simulation of flow and heat transfer in a de-swirled intake disk[J].Journal of Aerospace Power,2008,23(9):1684-1688.(in Chinese)
点击查看大图
计量
- 文章访问数: 505
- HTML浏览量: 15
- PDF量: 394
- 被引次数: 0