留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球轴承接触疲劳寿命预估的损伤力学-有限元法

张杰毅 陈果 谢阶栋

张杰毅, 陈果, 谢阶栋. 球轴承接触疲劳寿命预估的损伤力学-有限元法[J]. 航空动力学报, 2019, 34(10): 2246-2255. doi: 10.13224/j.cnki.jasp.2019.10.018
引用本文: 张杰毅, 陈果, 谢阶栋. 球轴承接触疲劳寿命预估的损伤力学-有限元法[J]. 航空动力学报, 2019, 34(10): 2246-2255. doi: 10.13224/j.cnki.jasp.2019.10.018
ZHANG Jieyi, CHEN Guo, XIE Jiedong. Damage mechanics-finite element method for contact fatigue life prediction of ball bearings[J]. Journal of Aerospace Power, 2019, 34(10): 2246-2255. doi: 10.13224/j.cnki.jasp.2019.10.018
Citation: ZHANG Jieyi, CHEN Guo, XIE Jiedong. Damage mechanics-finite element method for contact fatigue life prediction of ball bearings[J]. Journal of Aerospace Power, 2019, 34(10): 2246-2255. doi: 10.13224/j.cnki.jasp.2019.10.018

球轴承接触疲劳寿命预估的损伤力学-有限元法

doi: 10.13224/j.cnki.jasp.2019.10.018
基金项目: 国家自然科学基金(51675263); 国家科技重大专项(2017-Ⅳ-0008-0045)

Damage mechanics-finite element method for contact fatigue life prediction of ball bearings

  • 摘要: 以线弹性力学及连续损伤力学为基础,构建球轴承接触疲劳的损伤演化方程。利用轴承钢GCr15扭转疲劳试验数据拟合得到损伤演化方程中的材质参数。通过该方程预估轴承钢GCr15的扭转疲劳寿命,其结果与试验数据吻合。采用ABAQUS有限元分析软件仿真得到6206球轴承的接触应力分布并分析了6206球轴承最大接触应力区。根据6206球轴承的载荷及应力应变状态将最大接触应力区简化为二维平面应力模型。在此基础上预估了6206球轴承的接触疲劳寿命。设计并进行了6206球轴承疲劳强化试验。轴承接触疲劳剥落都萌生于内圈,与应力仿真分析结果相契合。三个试验轴承的试验与预估接触疲劳寿命的相对误差分别为29.52%、3.03%和51.16%,验证了接触疲劳寿命预估方法的有效性。研究表明采用损伤力学预估球轴承的接触疲劳寿命是工程中可行且实用的方法。

     

  • [1] 尉询楷,冯悦,杨立,等.航空发动机中介主轴承故障预测研究[C]//航空安全与装备维修技术:航空安全与装备维修技术学术研讨会论文集.北京:中国航空学会,2014:469-478.
    [2] 林桐,陈果,张全德,等.航空滚动轴承振动特征的故障灵敏度分析与融合技术[J].航空动力学报,2017,32(9):2205-2218.LIN Tong,CHEN Guo,ZHANG Quande,et al.Fault sensitivity analysis and fusion technology for vibration features of aero-engine rolling bearings[J].Journal of Aerospace Power,2017,32(9):2205-2218.(in Chinese)
    [3] MARBLE S,MORTON B P.Predicting the remaining useful life of propulsion system bearings[C]//2006 IEEE Aerospace Conference.Big Sky,MT,US:IEEE,2006:1350-1357.
    [4] BOLANDER N,QIU H,EKLUND N,et al.Physics-based remaining useful life prediction for aircraft engine bearing prognosis[C]//Annual Conference of the Prognostics and Health Management Society.San Diego,CA,US:Prognostics and Health Management Society,2009:1-12.
    [5] XU G,SADEGHI F.Spall initiation and propagation due to debris denting[J].Wear,1996,201(1):106-116.
    [6] RAJE N,SADEGHI F,RATEICK R G.A statistical damage mechanics model for subsurface initiated spalling in rolling contacts[J].Journal of Tribology,2008,130(4):042201.1-042201.11.
    [7] XU G,SADEGHI F,HOEPRICH M R.Dent initiated spall formation in EHL rolling/sliding contact[J].Journal of Tribology,1998,120(3):453-462.
    [8] SLACK T,SADEGHI .Explicit finite element modeling of subsurface initiated spalling in rolling contacts[J].Tribology International,2010,43(9):1693-1702.
    [9] WARHADPANDE A,SADEGHI F,KOTZALAS M N,et al.Effects of plasticity on subsurface initiated spalling in rolling contact fatigue[J].International Journal of Fatigue,2012,36(1):80-95.
    [10] 牛蔺楷.兆瓦级风力发电机偏航轴承疲劳损伤分析[D].太原:太原理工大学,2011.NIU Linkai.Study on fatigue damage of yaw bearing in MW level winde turbine[D].Taiyuan:Taiyuan University of Technology,2011.(in Chinese)
    [11] 牛蔺楷,杨洁明,高俊云.风力机偏航轴承滚道硬化层接触疲劳损伤分析[J].太阳能学报,2013,34(8):1415-1420.NIU Linkai,YANG Jieming,GAO Junyun.Contact fa-tigue analysis of wind turbine yaw bearing raceway hardened layer[J].Journal of Solar Energy,2013,34(8):1415-1420.(in Chinese)
    [12] HARRIS T A,KOTZALAS M N.滚动轴承分析:第1卷 轴承技术的基本概率[M].罗继伟,马伟,译.北京:机械工业出版社,2009.
    [13] LEMAITRE J.A course on damage mechanics[M].Berlin:Springer-Verleg:1992.
    [14] WEINZAPFEL N,SADEGHI F.Numerical modeling of sub-surface initiated spalling in rolling contacts[J].Tribology International,2013,59:210-221.
    [15] CHABOCHEJ L,LESNE P M.A non-linear continuous fatigue damage model[J].Fatigue and Fracture of Engineering Materials and Structures,1988,11(1):1-17.
    [16] XIAO Y C,LI S,GAO Z.A continuum damage mechanics model for high cycle fatigue[J].International Journal of Fatigue,1998,20(7):503-508.
    [17] MEMONI R,ZHANG X,CUI D.Fatigue life prediction of 3-D roblems by damage mechanics with two-block loading[J].International Journal of Fatigue,2002,24(1):29-37.
    [18] BOLOTIN V V.Mechanics of fatigue[M].Boca Raton,US:CRC Press,1999.
    [19] JALALAHMADI B,SADEGHI F.A Voronoi FE fatigue damage model for life scatter in rolling contacts[J].Journal of Tribology,2010,132(2):021404.1-021404.14.
    [20] SHIMIZU S,TSUCHIYA K,TOSHA K.Probabilistic stress-life (P-S-N) study on bearing steel using alternating torsion life test[J].Tribology Transactions,2009,52(6):807-816.
    [21] 谢阶栋,基于损伤力学的滚动轴承疲劳寿命预测[D].南京:南京航空航天大学,2018.XIE Jiedong.Fatigue life prediction of rolling bearing based on damage mechanics[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2018.(in Chinese)
    [22] 冈本纯三.球轴承的设计计算[M].北京:机械工业出版社,2003.
    [23] ZHOU R S.Surface topography and fatigue life of rolling contact bearing[J].Tribology Transactions,1993,36(3):329-340.
  • 加载中
计量
  • 文章访问数:  483
  • HTML浏览量:  1
  • PDF量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-16
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回