留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热/力耦合作用下基于应力分析的冰破坏准则

肖春华 桂业伟 杨升科

肖春华, 桂业伟, 杨升科. 热/力耦合作用下基于应力分析的冰破坏准则[J]. 航空动力学报, 2019, 34(12): 2616-2626. doi: 10.13224/j.cnki.jasp.2019.12.010
引用本文: 肖春华, 桂业伟, 杨升科. 热/力耦合作用下基于应力分析的冰破坏准则[J]. 航空动力学报, 2019, 34(12): 2616-2626. doi: 10.13224/j.cnki.jasp.2019.12.010
XIAO Chunhua, GUI Yewei, YANG Shengke. Ice fracture criterion coupled thermal/mechanical effect based on stress analysis[J]. Journal of Aerospace Power, 2019, 34(12): 2616-2626. doi: 10.13224/j.cnki.jasp.2019.12.010
Citation: XIAO Chunhua, GUI Yewei, YANG Shengke. Ice fracture criterion coupled thermal/mechanical effect based on stress analysis[J]. Journal of Aerospace Power, 2019, 34(12): 2616-2626. doi: 10.13224/j.cnki.jasp.2019.12.010

热/力耦合作用下基于应力分析的冰破坏准则

doi: 10.13224/j.cnki.jasp.2019.12.010
基金项目: 国家自然科学基金面上项目(11572338); 国家重点基础研究计划(2015CB755804)

Ice fracture criterion coupled thermal/mechanical effect based on stress analysis

  • 摘要: 根据飞机热除冰的物理过程,考虑外部空气动力和蒙皮表面加热的作用,建立了NACA 0012翼型前缘冰层应力计算模型。采用有限元方法和平面三角形单元对控制方程组进行了求解,获得了外部空气动力和蒙皮表面加热对冰层黏附界面应力的影响规律。研究表明:蒙皮表面不加热时,来流速度影响了黏附界面应力的强度,来流攻角影响了黏附界面应力的分布,冰-蒙皮间黏附界面切应力最大值随来流速度呈近似线性增大趋势,但外部空气动力很难造成冰层破坏。蒙皮表面加热时,冰-蒙皮间黏附界面的耦合应力和冰层内部的主应力随着热流密度的增大而增大,很容易超过剪切强度,这是造成冰破坏的关键因素。耦合冰-蒙皮剪切强度随界面温度的变化关系,初步建立了基于应力分析和热/力耦合作用的冰破坏判断准则。外部空气动力产生的界面应力和蒙皮表面加热产生的界面热应力之和,必须大于与蒙皮表面温度相关的剪切强度,则冰层发生破坏,破坏位置是耦合应力超过剪切强度的区域。

     

  • [1] KIND R J,POTAPCZUK M G,FEO A,et al.Experimental and computational simulation of in-flight icing phenomena[J].Progress in Aerospace Sciences,1998,34(5/6):275-345.
    [2] KEVIN R P,CAROL D J.A statistical review of aviation airframe icing accidents in the US[R].Washington DC:National Transportation Safety Board,2004.
    [3] LYNCH F T,KHODADOUST A.Effects of ice accretions on aircraft aerodynamics[J].Progress in Aerospace Sciences,2001,37(8):669-767.
    [4] BRAGG M B,BROEREN A P,BLUMENTHAL L A.Iced-airfoil aerodynamics[J].Progress in Aerospace Sciences,2005,41(5):323-362.
    [5] 肖春华,桂业伟,易贤,等.结冰翼型表面明冰的压力分布和应力计算[J].航空动力学报,2009,24(7):1457-1463. XIAO Chunhua,GUI Yewei,YI Xian,et al.Pressure distribution and stress calculation of glaze ice on iced airfoil[J].Journal of Aerospace Power,2009,24(7):1457-1463.(in Chinese)
    [6] 李清英,朱春玲,白天.电脉冲除冰系统的除冰实验与数值模拟[J].航空动力学报,2012,27(2):350-356. LI Qingying,ZHU Chunling,BAI Tian.De-icing experiment and numerical simulation of the electro-impulse de-icing system[J].Journal of Aerospace Power,2012,27(2):350-356.(in Chinese)
    [7] SOLTIS J,PALACIOS J,EDEN T,et al.Ice adhesion mechanisms of erosion-resistant coatings[J].AIAA Journal,2015,53(3):1-9.
    [8] SOLTIS J,PALACIOS J,WOLFE D E,et al.Evaluation of ice adhesion strength on erosion resistant materials[R].AIAA-2013-1509,2013.
    [9] 肖春华,林贵平,桂业伟,等.电热除冰的热力耦合特性及其对冰层的影响研究[J].实验流体力学,2012,26(2):23-28. XIAO Chunhua,LIN Guiping,GUI Yewei,et al.Study on coupled thermo-mechanical characteristics and its effects during the process of electrothermal deicing[J].Journal of Experiments in Fluid Mechanics,2012,26(2):23-28.(in Chinese)
    [10] LEFFEL K L.A numerical and experimental investigation of electrothermal aircraft deicing[D].Toledo,Ohio:The University of Toledo,1986.
    [11] KEITH T G,DEWITT K J,MASIULANIEC K C,et al.Predicted electrothermal deicing of aircraft blades[R].AIAA 84-0110,1984.
    [12] 常士楠,艾素霄,霍西恒,等.改进的电热除冰系统仿真[J].航空动力学报,2008,23(10):1753-1758. CHANG Shinan,AI Suxiao,HUO Xiheng,et al.Improved simulation of electrothermal de-icing system[J].Journal of Aerospace Power,2008,23(10):1753-1758.(in Chinese)
    [13] SAEED F,PARASCHIVOIU I.Optimization of a hot-air anti-icing system[R].AIAA-2003-733,2003.
    [14] PAPADAKIS M,WONG S H,YEONG H W,et al.Icing tunnel experimental with a hot air anti-icing system[R].AIAA-2008-444,2008.
    [15] 卜雪琴,林贵平,郁嘉.三维内外热耦合计算热气防冰系统表面温度[J].航空动力学报,2009,24(11):2495-2500. BU Xueqin,LIN Guiping,YU Jia.Three-dimensional conjugate heat transfer simulation for the surface temperature of wing hot-air anti-icing system[J].Journal of Aerospace Power,2009,24(11):2495-2500.(in Chinese)
    [16] SCAVUZZO R J,CHU M L,ANANTHASWAMY V.Influence of aerodynamic forces in ice shedding[J].Journal of Aircraft,1994,31(3):526-530.
    [17] SCAVUZZO R J,CHU M L.Structural properties of impact ices accreted on aircraft structures[R].NASA Contractor Report 179580,1987.
    [18] WRIGHT W B,DEWITT K J,KEITH T G,Jr.Numerical simulation of icing,deicing,and shedding[R].AIAA 91-0655,1991.
    [19] 肖春华,林贵平,桂业伟,等.冰脱落对电热除冰传热特性的影响研究[J].空气动力学学报,2012,30(4):551-556. XIAO Chunhua,LIN Guiping,GUI Yewei,et al.Study on effect of ice shedding on heat transfer characteristics of electrothermal aircraft deicing[J].Acta Aerodynamica Sinica,2012,30(4):551-556.(in Chinese)
    [20] YASLIK A D,DEWITT K J,KEITH T G.Further developments in three-dimensional numerical simulation of electrothermal deicing systems[R].AIAA 92-0528,1992.
    [21] 裘燮纲,韩凤华.飞机防冰系统[M].北京:航空专业教材编审组,1985.
    [22] HENRY R.Development of an electrothermal de-icing/anti-icing model[R].AIAA 92-0526,1992.
    [23] THWAITES B.Incompressible aerodynamics[M].Oxford,UK:Clarendon Press,1960.
    [24] POTAPCZUK M G,BIDWELL C S.Numerical simulation of ice growth on a MS-317 swept wing geometry[R].AIAA 91-0263,1991.
    [25] 王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [26] 孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999.
  • 加载中
计量
  • 文章访问数:  363
  • HTML浏览量:  4
  • PDF量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-06
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回