留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多点连续动态激光冲击强化残余应力场数值分析

苟磊 马玉娥 杜永

苟磊, 马玉娥, 杜永. 多点连续动态激光冲击强化残余应力场数值分析[J]. 航空动力学报, 2019, 34(12): 2738-2744. doi: 10.13224/j.cnki.jasp.2019.12.023
引用本文: 苟磊, 马玉娥, 杜永. 多点连续动态激光冲击强化残余应力场数值分析[J]. 航空动力学报, 2019, 34(12): 2738-2744. doi: 10.13224/j.cnki.jasp.2019.12.023
GOU Lei, MA Yu’e, DU Yong. Continuous dynamic numerical analysis of residual stress field under multi-point laser shock peening[J]. Journal of Aerospace Power, 2019, 34(12): 2738-2744. doi: 10.13224/j.cnki.jasp.2019.12.023
Citation: GOU Lei, MA Yu’e, DU Yong. Continuous dynamic numerical analysis of residual stress field under multi-point laser shock peening[J]. Journal of Aerospace Power, 2019, 34(12): 2738-2744. doi: 10.13224/j.cnki.jasp.2019.12.023

多点连续动态激光冲击强化残余应力场数值分析

doi: 10.13224/j.cnki.jasp.2019.12.023
基金项目: 国家自然科学基金(11572250)

Continuous dynamic numerical analysis of residual stress field under multi-point laser shock peening

  • 摘要: 为了提高激光冲击强化(LSP)数值模拟效率及计算精度,基于传统激光冲击仿真策略,提出了一种连续显式动态冲击仿真策略。使用显式动态分析完成多次冲击,再进行隐式静态分析得到稳定残余应力场;建立ABAQUS三维平板有限元模型,基于该策略研究了多次冲击后残余应力场的分布;Python后处理后,残余应力模拟值与测量值吻合较好。结果表明:当激光功率密度为1 GW/cm2时最大残余应力为-212.5 MPa,其测量均值为-216.7 MPa,误差为1.9%。激光功率密度从1 GW/cm2增加至4 GW/cm2,残余应力层深度由0.7 mm增加至1 mm。验证了该策略的准确性,在大幅度提高仿真效率的基础上有效地提高了模拟精度,为大型结构大面积激光冲击强化数值模拟提供了一种仿真思路。

     

  • [1] 王声波,范勇,吴鸿兴,等.7050航空铝合金结构材料激光冲击强化处理研究[J].中国激光,2004,31(1):125-128. WANG Shengbo,FAN Yong,WU Hongxing,et al.Research of strengthening 7050 aerial aluminum alloy structural material with laser shock processing[J].Chinese Journal of Lasers,2004,31(1):125-128.(in Chinese)
    [2] 聂祥樊,何卫锋,臧顺来,等.激光冲击对TC11钛合金组织和力学性能的影响[J].航空动力学报,2014,29(2):321-327. NIE Xiangpan,HE Weifeng,ZANG Shunlai,et al.Effects on structure and mechanical properties of TC11 titanium alloy by laser shock peening[J].Journal of Aerospace Power,2014,29(2):321-327.(in Chinese)
    [3] PEYRE P,FABBRO R.Laser shock processing:a review of the physics and applications[J].Optical and Quantum Electronics,1995,27(12):1213-1229.
    [4] MONTROSS C S,WEI T,YE L,et al.Laser shock processing and its effects on microstructure and properties of metal alloys:a review[J].International Journal of Fatigue,2002,24(10):1021-1036.
    [5] HATAMLEH O,LYONS J,FORMAN R.Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints[J].International Journal of Fatigue,2007,29(3):421-434.
    [6] 高玉魁,仲政,雷力明.激光冲击强化和喷丸强化对FGH97高温合金疲劳性能的影响[J].稀有金属材料与工程,2016,45(5):1230-1234. GAO Yukui,ZHONG Zheng,LEI Liming.Influence of laser peening and shot peening on fatigue properties of FGH97 superalloy[J].Rare Metal Materials and Engineering,2016,45(5):1230-1234.(in Chinese)
    [7] FANG Y W,LI Y H,HE W F,et al.Effects of laser shock processing with different parameters and ways on residual stresses fields of a TC4 alloy blade[J].Materials Science and Engineering,2013,559(1):683-692.
    [8] SEE D W,DULANEY J L,CLAUER A H,et al.The air force manufacturing technology laser peening initiative[J].Surface Engineering,2002,18(1):32-36.
    [9] FABBRO R,FOURNIER J,BALLARD P,et al.Physical study of laser-produced plasma in confined geometry[J].Journal of Applied Physics,1990,68(2):775-784.
    [10] WILLIAM B,ROBERT B.Finite element simulation of laser shock peening[J].International Journal of Fatigue,1999,21(7):719-724.
    [11] ROBERT A B,WILLIAM R B,STEVEN E,et a1.Prediction and characterization of residual stresses from laser shock peening[J].International Journal of Fatigue,2012,36(1):96-108.
    [12] AMARCHINTA H K,GRANDHI R V,CLAUER A H,et al.Simulation of residual stress induced by a laser peening process through inverse optimization of material models[J].Journal of Materials Processing Technology,2010,210(14):1997-2006.
    [13] 胡永祥,姚振强,胡俊.激光冲击强化残余应力场的数值仿真分析[J].中国激光,2006,33(6):846-851. HU Yongxiang,YAO Zhenqiang,HU Jun.Numerical simulation of residual stress field for laser shock processing[J].Chinese Journal of Lasers,2006,33(6):846-851.(in Chinese)
    [14] DING K.Three-dimensionaldynamic finite element analysis of multiple laser shock peening processes[J].Surface Engineering,2003,19(5):351-358.
    [15] 曹金凤,石亦平.ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009.
    [16] HU Y,YAO Z,HU J.3-D FEM simulation of laser shock processing[J].Surface and Coatings Technology,2006,201(3):1426-1435.
    [17] HU Y,YAO Z.Numerical simulation and experimentation of overlapping laser shock processing with symmetry cell[J].International Journal of Machine Tools and Manufacture,2008,48(2):152-162.
    [18] 陈瑞芳,郭乃国,花银群.激光冲击参数对残余应力场影响的三维数值模拟[J].中国激光,2008,35(6):931-936. CHEN Ruifang,GUO Naiguo,HUA Yinqun.Numerical simulation of effects of laser shock parameters on residual stress field induced by laser shock processing[J].Chinese Journal of Lasers,2008,35(6):931-936.(in Chinese)
    [19] 蒋聪盈,黄露,王婧辰,等.TC4钛合金激光冲击强化与喷丸强化的残余应力模拟分析[J].表面技术,2016,45(4):5-9. JIANG Congying,HUANG Lu,WANG Jingchen,et al.Simulation analysis of the residual stress field of TC4 Ti alloy under laser shock peening and shot peening[J].Surface Technology,2016,45(4):5-9.(in Chinese)
    [20] 余天宇,戴峰泽,张永康,等.平顶光束激光冲击2024铝合金诱导残余应力场的模拟与实验[J].中国激光,2012,39(10):25-31. YU Tianyu,DAI Fengze,ZHANG Yongkang,et al.Simulationand experimental study on residual stress field of 2024 aluminum alloy induced by flat-top laser beam[J].Chinese Journal of Lasers,2012,39(10):25-31.(in Chinese)
    [21] 徐国平,尹志民,黄继武,等.X射线衍射测试PDC表面残余应力的实验研究[J].金刚石与磨料磨具工程,2007,161(5):40-43. XU Guoping,YIN Zhimin,HAUNG Jiwu,et al.Experimental study on measuring residuaI stresses of PDC by X-ray diffraction[J].Diamond and Abrasives Engineering,2007,161(5):40-43.(in Chinese)
    [22] 苏景鹤,江丙云.ABAQUS Python二次开发攻略[M].北京:人民邮电出版社,2016.
    [23] 任海峰,高鸣.Python-Matlab联合编程Abaqus高级后处理技术研究[J].四川兵工学报,2015,536(7):133-138. REN Haifeng,GAO Ming.Research on Abaqus advanced post processing technology based on Python-Matlab programming[J].Journal of Sichuan Ordnance,2015,36(7):133-138.(in Chinese)
  • 加载中
计量
  • 文章访问数:  329
  • HTML浏览量:  1
  • PDF量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-10
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回