留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

管-隔板复合式减涡器流阻特性

侯晓亭 王锁芳 张凯

侯晓亭, 王锁芳, 张凯. 管-隔板复合式减涡器流阻特性[J]. 航空动力学报, 2020, 35(1): 106-113. doi: 10.13224/j.cnki.jasp.2020.01.013
引用本文: 侯晓亭, 王锁芳, 张凯. 管-隔板复合式减涡器流阻特性[J]. 航空动力学报, 2020, 35(1): 106-113. doi: 10.13224/j.cnki.jasp.2020.01.013
HOU Xiaoting, WANG Suofang, ZHANG Kai. Drag reduction performance of tube-baffle composite vortex reducer[J]. Journal of Aerospace Power, 2020, 35(1): 106-113. doi: 10.13224/j.cnki.jasp.2020.01.013
Citation: HOU Xiaoting, WANG Suofang, ZHANG Kai. Drag reduction performance of tube-baffle composite vortex reducer[J]. Journal of Aerospace Power, 2020, 35(1): 106-113. doi: 10.13224/j.cnki.jasp.2020.01.013

管-隔板复合式减涡器流阻特性

doi: 10.13224/j.cnki.jasp.2020.01.013
基金项目: 国家科技重大专项(2017-Ⅲ-0011-0037)

Drag reduction performance of tube-baffle composite vortex reducer

  • 摘要: 为了探索管-隔板复合式减涡器结构对共转盘腔径向内流流阻特性的影响规律,对不同转速、管-隔板复合结构下的去旋系统展开了数值研究,得到了不同工况下径向内流共转盘腔的流场结构、总压损失以及沿程总压损失分布曲线。研究结果表明:相对于基础管式减涡器,管-隔板复合式减涡器可以明显降低盘腔内的总压损失。管式减涡器盘腔上游安装隔板的减阻效果要优于盘腔下游安装隔板的减阻效果,且上游隔板和下游隔板存在最佳无量纲长度为0118和0065,与基础模型相比,最佳减阻效果分别提高17%和5%。在最佳隔板长度下,管式减涡器上、下游同时安装隔板的减阻效果最好,相比于基础模型,减阻性能提高19%。

     

  • [1] HIDE R.On source-sink flows in rotating fluid[J].Journal of Fluid Mechanics,1968,32(4):737-764.
    [2] FIROUZIAN M,OWEN J M,PINCOMBE J R,et al.Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid:Part 1 the flow structure[J].International Journal of Heat and Fluid Flow,1985,6(4):228-234.
    [3] OWEN J M,PINCOMBE J R.Vortex break down in a rotating cylindrical cavity[J].Journal of Fluid Mechanics,1979,90(1):109-127.
    [4] FIROUZIAN M,OWEN J M,PINCOMBE J R,et al.Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid:Part 2 velocity,pressure and heat transfer measurements[J].Heat and Fluid Flow,1985,66(1):228-234.
    [5] FARTHING P R,OWEN J M.De-swirled radial inflow in a rotating cavity[J].International Journal of Heat and Fluid Flow,1991,12(1):63-70.
    [6] OWEN J M,PINCOMBE J R.Velocity measurements inside a rotating cylindrical cavity with a radial outflow of fluid[J].Journal of Fluid Mechanics Digital Archive,1980,99(1):111-127.
    [7] VINOD KUMAR B G,CHEW J W,HILLS N J.Rotating flow and heat transfer in cylindrical cavities with radial inflow[R].ASME Paper 2013-GT-032502,2013.
    [8] CHEW J W,FARTHING P R,OWEN J M,et al.The use of fins to reduce the pressure drop in a rotating cavity with a radial inflow[J].Journal of Turbomachinery,1989,111(3):349-356.
    [9] PFITZNER M,WASCHKA W.Development of an aeroengine secondary air system employing vortex reducers[R].Harrogate,UK:Development of an Aeroengine Secondary Air System Employing Vortex Reducers,2000.
    [10] NEGULESCU D,PFITZNER M.Secondary air systems in aeroengines employing vortex reducers[R].New Orleans,Louisiana,US:American Society of Mechanical Engineers,2001.
    [11] PEITSCH D,STEIN M,HEIN S,et al.Numerical investigation of vortex reducer flows in the high pressure compressor of modern aeroengines[R].Amsterdam,The Netherlands:American Society of Mechanical Engineers,2002.
    [12] GNTHER A,UFFRECHT W,KAISER E,et al.Experimental analysis of varied vortex reducer configurations for the internal air system of jet engine gas turbines[R].Berlin,Germany:American Society of Mechanical Engineers,2008.
    [13] 黄爱霞,王锁芳.反旋进气盘腔内流动与换热的数值模拟[J].航空动力学报,2008,23(9):1684-1688. HUANG Aixia,WANG Suofang.Numerical simulation of flow and heat transfer inside co-rotating disc cavity with de- swirled radial inflow[J].Journal of Aerospace Power,2008,23(9):1684-1688.(in Chinese)
    [14] 吴丽军,陈潇,邓双国,等.减涡器流阻特性计算分析[J].燃气轮机技术,2014,27(3):37-43. WU Lijun,CHEN Xiao,DENG Shuangguo,et al.Calculation and analysis of the flow resistance of the vortex reducer[J].Gas Turbine Technology,2014,27(3):37-43.(in Chinese)
    [15] 赵秋月,娄德仓,郭文,等.旋转盘腔去旋系统数值模拟[J].燃气涡轮试验与研究,2014,27(5):43-48. ZHAO Qiuyue,LOU Decang,GUO Wen,et al.Numerical simulation for the de-swirled system in rotating cavity[J].Gas Turbine Experiment and Research,2014,27(5):43-48.(in Chinese)
    [16] LIANG Z,LUO X,FENG Y.Experimental investigation of pressure losses in a co-rotating cavity with radial inflow employing tubed vortex reducers with varied nozzles[J].Experimental Thermal and Fluid Science,2015,66:304-315.
    [17] 廖乃冰,周志翔,邱长波.空气系统径向内流引气的流动特性数值分析[J].推进技术,2014,35(3):378-383. LIAO Naibing,ZHOU Zhixiang,QIU Changbo.Numerical simulation of radial inflow in air system[J].Journal of Propulsion Technology,2014,35(3):378-383.(in Chinese)
    [18] 呼艳丽,郭文,王蕾,等.反旋喷嘴进气旋转盘腔压力损失特性[J].航空动力学报,2016,31(8):1866-1873. HU Yanli,GUO Wen,WANG Lei,et al.Pressure loss characteristics in a rotating cavity with de-swirled nozzles[J].Journal of Aerospace Power,2016,31(8):1866-1873.(in Chinese)
    [19] LUO X,FENG A,QUAN Y,et al.Experimental analysis of varied vortex reducers in reducing the pressure drop in a rotating cavity with radial inflow[J].Experimental Thermal and Fluid Science,2016,77:159-166.
  • 加载中
计量
  • 文章访问数:  321
  • HTML浏览量:  0
  • PDF量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-08
  • 刊出日期:  2020-01-28

目录

    /

    返回文章
    返回