留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舰面流场中起动位置对旋翼瞬态气弹响应影响

赵嘉琛 韩东 于雷

赵嘉琛, 韩东, 于雷. 舰面流场中起动位置对旋翼瞬态气弹响应影响[J]. 航空动力学报, 2020, 35(1): 144-152. doi: 10.13224/j.cnki.jasp.2020.01.017
引用本文: 赵嘉琛, 韩东, 于雷. 舰面流场中起动位置对旋翼瞬态气弹响应影响[J]. 航空动力学报, 2020, 35(1): 144-152. doi: 10.13224/j.cnki.jasp.2020.01.017
ZHAO Jiachen, HAN Dong, YU Lei. Influence of starting position of ship surface flow field on rotor transient aeroelastic response[J]. Journal of Aerospace Power, 2020, 35(1): 144-152. doi: 10.13224/j.cnki.jasp.2020.01.017
Citation: ZHAO Jiachen, HAN Dong, YU Lei. Influence of starting position of ship surface flow field on rotor transient aeroelastic response[J]. Journal of Aerospace Power, 2020, 35(1): 144-152. doi: 10.13224/j.cnki.jasp.2020.01.017

舰面流场中起动位置对旋翼瞬态气弹响应影响

doi: 10.13224/j.cnki.jasp.2020.01.017
基金项目: 旋翼空气动力学重点实验室开放基金(RAL20180201-1); 国家自然科学基金面上项目(11972181);2018年研究生创新基地(实验室)开放基金(KFJJ20180106);江苏高校优势学科建设工程

Influence of starting position of ship surface flow field on rotor transient aeroelastic response

  • 摘要: 为研究舰面流场中直升机起动位置对旋翼瞬态气弹响应影响,通过CFD方法模拟得到舰面流场速度分布信息。旋翼动力学建模采用非线性准定常气动模型和中等变形梁假设,结合不同起动位置对动力学方程进行求解。结果表明:直升机起动位置越靠近舰艏和左舷,桨叶负向挥舞越大。在甲板中心1 m范围内,最靠近舰艏和左舷的位置负向最大位移可达159%旋翼半径,中心处负向最大位移仅为85%旋翼半径,源于靠近舰艏和左舷位置垂向气流变化梯度明显高于舰艉和右舷。研究表明舰面流场垂向气流变化梯度对旋翼瞬态气弹响应影响明显,改变直升机起动位置能有效降低旋翼瞬态气弹响应。

     

  • [1] NEWMAN S J.An investigation into the phenomenon of helicopter blade sailing[D].Southampton,United Kingdom:University of Southampton,1995.
    [2] GEYER W P,SMITH E C,KELLER J A.Aeroelastic analysis of transient blade dynamics during shipboard engage/disengage operations[J].Journal of Aircraft,1998,35(3):448-453.
    [3] KELLER J A.Analysis and control of the transient aeroelastic response of rotors during shipboard engagement and disengagement operations[D].State College,Pennsylvania,US:The Pennsylvania State University, 2001.
    [4] CZERWIEC R M,POLSKY S A.LHA airwake wind tunnel and CFD comparison with and without bow flap[R].AIAA-2004-4832,2004.
    [5] KANG Hao,HE Chengjian.Modeling and simulation of rotor engagement and disengagement during shipboard operations[C]∥Proceedings of the American Helicopter Society 60th Annual Forum.Maryland,US:American Helicopter Society,2004:315-324.
    [6] ROPER D M,OWEN I,PADFIELD G D.Integrating CFD and piloted simulation to quantify ship-helicopter operating limits[J].The Aeronautical Journal,2006,110(1109):419-428.
    [7] FORREST J S,OWEN I.An investigation of ship airwakes using detached-eddy simulation[J].Computer and Fluids,2010,39(4):656-673.
    [8] HAN Dong,WANG Haowen,GAO Zheng.Aeroelastic analysis of a shipboard helicopter rotor with ship motions during engagement and disengagement operations[J].Aerospace Science and Technology,2012,16(1):1-9.
    [9] KHOULI F,WALL A S,AFAGH F F,et al.Influence of ship motion on the aeroelastic response of a froude-scaled maritime rotor system[J].Ocean Engineering,2012,54(1):170-181.
    [10] KAARIA C H,WANG Yaxing,WHITE M D,et al.An experimental technique for evaluating the aerodynamic impact of ship superstructures on helicopter operations[J].Ocean Engineering,2013,61(15):97-108.
    [11] GROOM M,THORNBER B,VIO G A.Isolated rotor engagement and disengagement simulations in ship airwake[R].Perth,Australia:20th Australasion Fluid Mechanics Conference,2016.
    [12] KHOULI F,AFAGH F F,LANGLOIS R G.Design,simulation,and experimental results for flexible rotors in a ship airwake[J].Journal of Aircraft,2016,53(1):262-275.
    [13] ZHANG Jianhua,SMITH E C,ZAJACZKOWSKI F.Analysis of rotor start-up and shutdown on a sea-based oil rig[J].Journal of Aircraft,2017,54(1):20-35.
    [14] HAN Dong,YU Lei,GEORGE N B.Transient aeroelastic response control of shipboard rotors during engagements by gurney flaps[J].Journal of Aircraft,2018,56(2):837-841.
    [15] WATSON N A,KELLY M F,OWEN I.Computational and experimental modelling study of the unsteady airflow over the aircraft carrier HMS Queen Elizabeth[J].Ocean Engineering,2019,172(15):562-574.
    [16] 康浩,高正.舰面直升机旋翼瞬态气弹响应分析[J].航空动力学报,2000,15(1):67-70. KANG Hao,GAO Zheng.Aeroelastic response analysis of helicopter rotor during shipboard operation[J].Journal of Aerospace Power,2000,15(1):67-70.(in Chinese)
    [17] 韩东,高正,王浩文.舰船升沉运动对旋翼瞬态气弹响应影响分析[J].空气动力学学报,2007,25(4):449-453. HAN Dong,GAO Zheng,WANG Haowen.Effects of heave of ship on rotor transient areoelastic response[J].Acta Aerodynamica Sinica,2007,25(4):449-453.(in Chinese)
    [18] 韩东,王浩文,高正.舰船纵横摇运动对旋翼瞬态气弹响应影响分析[J].直升机技术,2007,151(3):34-38. HAN Dong,WANG Haowen,GAO Zheng.Influences of pitch or roll of ship on transient areoelastic response of rotor blade[J].Helicopter Technique,2007,151(3):34-38.(in Chinese)
    [19] 韩东,高正,王浩文,等.铰接式旋翼舰面瞬态气弹响应及参数研究[J].空气动力学学报,2007,25(1):7-11. HAN Dong,GAO Zheng,WANG Haowen,et al.Analysis of transient aeroelastic response for shipboard articulate rotor[J].Acta Aerodynamica Sinica,2007,25(1):7-11.(in Chinese)
    [20] 韩东,高正,王浩文,等.跷跷板旋翼舰面瞬态气弹响应分析及抑制方法[J].航空动力学报,2006,21(4):700-705. HAN Dong,GAO Zheng,WANG Haowen,et al.Analysis and control of transient aeroelastic response of teetering rotor on the shipboard[J].Journal of Aerospace Power,2006,21(4):700-705.(in Chinese)
    [21] 吉洪蕾,赵辉,陈仁良.基于直升机舰面起降动态仿真的风限图计算[J].航空学报,2018,39(11):122-156. JI Honglei,ZHAO Hui,CHEN Renliang.Wind-over-deck envelope calculation based on simulation of helicopter shipboard operations[J].Acta Aeronautica et Astronautica Sinica,2018,39(11):122-156.(in Chinese)
  • 加载中
计量
  • 文章访问数:  391
  • HTML浏览量:  5
  • PDF量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-31
  • 刊出日期:  2020-01-28

目录

    /

    返回文章
    返回