留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速喷管中激波分离诱发流场对称破缺的机理及其控制

贾睿东 冯喜平 陈慧

贾睿东, 冯喜平, 陈慧. 超声速喷管中激波分离诱发流场对称破缺的机理及其控制[J]. 航空动力学报, 2020, 35(1): 215-224. doi: 10.13224/j.cnki.jasp.2020.01.025
引用本文: 贾睿东, 冯喜平, 陈慧. 超声速喷管中激波分离诱发流场对称破缺的机理及其控制[J]. 航空动力学报, 2020, 35(1): 215-224. doi: 10.13224/j.cnki.jasp.2020.01.025
JIA Ruidong, FENG Xiping, CHEN Hui. Mechanism of symmetry breaking of flow field induced by shock separation in supersonic nozzle and its control[J]. Journal of Aerospace Power, 2020, 35(1): 215-224. doi: 10.13224/j.cnki.jasp.2020.01.025
Citation: JIA Ruidong, FENG Xiping, CHEN Hui. Mechanism of symmetry breaking of flow field induced by shock separation in supersonic nozzle and its control[J]. Journal of Aerospace Power, 2020, 35(1): 215-224. doi: 10.13224/j.cnki.jasp.2020.01.025

超声速喷管中激波分离诱发流场对称破缺的机理及其控制

doi: 10.13224/j.cnki.jasp.2020.01.025
基金项目: 陕西省重点研发计划(2017ZDCXL-GY-02-02); 中央高校建设世界一流大学(学科)和特色发展引导专项资金(PY3A056)

Mechanism of symmetry breaking of flow field induced by shock separation in supersonic nozzle and its control

  • 摘要: 为减缓或消除侧向力,开展了流动分离诱导流场对称破缺的机理研究。采用有限体积二阶迎风插值格式及k -ε湍流模型,数值模拟了某型超声速喷管的地面试车过程。详细分析了喷管内部的流场结构,着重讨论了喷管壁面附近出现的激波分离模式由自由激波分离到受限激波分离的转换过程。为了降低低空高背压条件下过膨胀喷管的侧向力,着重研究了喷管不同长径比、扩张比条件下的流场特性和流动分离模式。结果表明:在激波模式转换过程中能够诱发出极大的侧向力,改变喷管构型可以改善流场结构。适当缩短长径比和扩张比可以有效降低侧向力。长径比为105时将产生4 000 N以上的侧向力,而当长径比为095和115时,侧向力不超过20 N;当扩张比为539时,侧向力峰值达到4 000 N以上,而缩小扩张比到45时,侧向力明显下降。

     

  • [1] NAVE L H,COFFEY G A,孙国庆.大面积比火箭发动机的海平面侧向载荷[J].国外导弹技术,1980(6):27-54. NAVE L H,COFFEY G A,SUN Guoqing.Sea level side load of large area specific rocket engine[J].Foreign Missile Technology,1980(6):27-54.(in Chinese)
    [2] BROWN A M,RUF J,REED D,et al.Characterization of side load phenomena using measurement of fluid/structure interaction[J].Drug Metabolism and Drug Interactions,2002,20(3):143-158.
    [3] SRIVASTAVA N,TKACIK P T,KEANINI R G.Influence of nozzle random side loads on launch vehicle dynamics[J].Journal of Applied Physics,2010,108(4):044911.1-044911.19.
    [4] GNIN C,STARK R.Side loads in subscale dual bell nozzles[J].Journal of Propulsion and Power,2011,27(4):828-837.
    [5] PEKKARI L.Aeroelastic analysis of side load in supersonic nozzles with separated flow[R].AIAA 94-3377,1994.
    [6] STLUND J.Flow processes in rocket engine nozzles with focus on flow separation and side-loads[D].Stockholm,Sweden:Royal Institute of Technology,2002.
    [7] TERHARDT M,HAGEMANN G,FREY M.Flow separation and side-load behavior of the vulcain engine[R].AIAA 99-2762,1999.
    [8] NASUTI F,ONOFRI M,MARTELLI E.Numerical calculation of FSS/RSS transition in highly overexpanded rocket nozzle flows[J].Shock Waves,2010,20(2):139-146.
    [9] LEE J S,KIM H D,SETOGUCHI T,et al.Unsteady shock-flow characteristics in an over-expanded rocket nozzle[J].Journal of Thermal Science,2010,19(4):332-336.
    [10] RUF J H,TINNEY C E,BAARS W J,et al.Wall pressure unsteadiness and side loads in overexpanded rocket nozzles[J].AIAA Journal,2012,50(1):61-73.
    [11] MARTELLI E,CIOTTOLI P P,BERNARDINI M,et al.Detached-eddy simulation of shock unsteadiness in an overexpanded planar nozzle[J].AIAA Journal,2016,54(6):2016-2028.
    [12] RUF J H,MCDANIELS D M,BROWN A M.Details of side load test data and analysis for a truncated ideal contour nozzle and a parabolic contour nozzle[R].AIAA-2010-6813,2010.
    [13] SCHOMBERG K,OLSEN J,NEELY A,et al.Suppressing restricted shock separation in thrust-optimized rocket nozzles using contour geometry[R].AIAA-2015-4220,2015.
    [14] AGHABABAIE A A,THEUNISSEN R.Modeling free shock separation induced side loads in overexpanded rocket nozzles[J].AIAA Journal,2015,53(1):93-103.
    [15] 刘亚冰,王长辉,许晓勇.喷管分离流动与侧向载荷定常数值模拟[J].航空动力学报,2008,23(11):2114-2118. LIU Yabing,WANG Changhui,XU Xiaoyong.Stationary numerical simulation of flow separation and side load in nozzle[J].Journal of Aerospace Power,2008,23(11):2114-2118.(in Chinese)
    [16] 李波,王一白,杨立军,等.尾部二次喷流抑制喷管分离流动的数值研究[J].航空动力学报,2013,28(11):2615-2620. LI Bo,WANG Yibai,YANG Lijun,et al.Numerical investigation of nozzle flow separation control by injecting secondary jet from nozzle exit[J].Journal of Aerospace Power,2013,28(11):2615-2620.(in Chinese)
    [17] 闫胜,武洁,叶正寅.减弱喷管侧向力的变形喷管技术研究[J].推进技术,2018,39(5):986-992. YAN Sheng,WU Jie,YE Zhengyin.Research on morphing nozzle technology for reducing side loads[J].Journal of Propulsion Technology,2018,39(5):986-992.(in Chinese)
    [18] STARK R H.Flow separation in rocket nozzles:an overview[R].AIAA-2013-3840,2013.
  • 加载中
计量
  • 文章访问数:  372
  • HTML浏览量:  1
  • PDF量:  511
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-11
  • 刊出日期:  2020-01-28

目录

    /

    返回文章
    返回