留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于断口分析的钛合金轮内部缺陷损伤容限

吴英龙 宣海军 单晓明

吴英龙, 宣海军, 单晓明. 基于断口分析的钛合金轮内部缺陷损伤容限[J]. 航空动力学报, 2020, 35(2): 358-367. doi: 10.13224/j.cnki.jasp.2020.02.015
引用本文: 吴英龙, 宣海军, 单晓明. 基于断口分析的钛合金轮内部缺陷损伤容限[J]. 航空动力学报, 2020, 35(2): 358-367. doi: 10.13224/j.cnki.jasp.2020.02.015
WU Yinglong, XUAN Haijun, SHAN Xiaoming. Damage tolerance of titainum alloy wheel with internal defects based on fracture analysis[J]. Journal of Aerospace Power, 2020, 35(2): 358-367. doi: 10.13224/j.cnki.jasp.2020.02.015
Citation: WU Yinglong, XUAN Haijun, SHAN Xiaoming. Damage tolerance of titainum alloy wheel with internal defects based on fracture analysis[J]. Journal of Aerospace Power, 2020, 35(2): 358-367. doi: 10.13224/j.cnki.jasp.2020.02.015

基于断口分析的钛合金轮内部缺陷损伤容限

doi: 10.13224/j.cnki.jasp.2020.02.015
基金项目: 民机专项研究项目(MJ-2014-D-19)

Damage tolerance of titainum alloy wheel with internal defects based on fracture analysis

  • 摘要: 为进行某轮损伤容限设计,开展了裂纹扩展断口分析和仿真分析研究。由断口分析可知:疲劳源为一处内部自然缺陷;依据疲劳辉纹确定了裂纹扩展速率;在裂纹长度为2 mm附近,裂纹扩展速率明显增大,为第一、第二加载阶段转换区域;裂纹稳定扩展区裂纹长度与裂纹扩展速率呈双对数线性关系;应用列表梯度法和Paris公式法反推了第二加载阶段的疲劳寿命,与该阶段实际循环次数的最大误差是163%。裂纹稳定扩展阶段裂纹扩展仿真值与断口反推值吻合;非稳定扩展阶段仿真值与断口反推值的最大误差为-215%;基于以上研究,合理确定了某离心轮内部裂纹表面扩展停机检测周期。该类轮非稳定、失稳扩展阶段寿命占内部裂纹表面扩展阶段寿命的比例达248%~357%,因此准确计算具有重要意义。

     

  • [1] 张利军,何春艳,薛祥义,等.钛合金冶金缺陷实例分析[J].理化检验-物理分册,2013,49(12):819-822. ZHANG Lijun,He Chunyan,XUE Xiangyi,et al.Cases analysis on titanium alloy metallurgical defect[J].Physical Testing and Chemical Analysis:Part A Physical Testing,2013,49(12):819-822.(in Chinese)
    [2] National Transportation Safety Board.Aircraft accident report-United Airlines Flight 232 McDonnell Douglas DC-10-10 Sioux Gateway Airport[R].National Transportation Safety Board,NTSB/AAR-SO/06,1990.
    [3] U.S.Federal Aviation Administration.Airworthiness standards:aircraft engines:FAR33[S].New York:Federal Aviation Administration,2009:9-11.
    [4] 中国民用航空局.航空发动机适航规定:CCAR-33-R2[S].北京:中国民用航空局,2011:34-35.
    [5] U.S.Department of Defense,Joint services specification guide engines,aircraft,turbine:JSSG-2007A[S].New York:Department of Defense,2004:248-249.
    [6] LEVENRANT G R,MCCLUNG R C,WU Y T,et al.Turbine rotor material design[R].Federal Aviation Administration,Department of Transportation,DOT/FAA/AR-00/64,2000.
    [7] MCCLUNG R C,LEVENRANT G R,ENRIGHT M P,et al.Turbine rotor material design:Phase Ⅱ[R].Federal Aviation Administration,Department of Transportatio,DOT/FAA/AR-07/13,2008.
    [8] MOGILEVSKAYA S G,CROUCH S L,BALLARINIR,et al.Interaction between a crack and a circular inhomogeneity with interface stiffness and tension[J].International Journal of Fracture,2009,159(2):191-207.
    [9] 张纪奎,郦正能,邱志平,等.钛合金结构损伤容限设计可行性研究[J].航空学报,2009,30(4):763-767. ZHANG Jikui,LI Zhengneng,QIU Zhiping,et al.Feasibility study on damage tolerance design of titanium alloys[J].Acta Aeronautica et Astronautica Sinica,2009,30(4):763-767.(in Chinese)
    [10] 张国栋,于慧臣,何玉怀,等.损伤力学方法在材料低周疲劳试验中的应用研究[J].航空动力学报,2007,22(9):1544-1549. ZHANG Guodong,YU Huichen,HE Yuhuai,et al.Application research of damage dynamics for low cycle fatigue test[J].Journal of Aerospace Power,2007,22(9):1544-1549.(in Chinese)
    [11] 吕志阳,熊峻江,马少俊,等.4种典型航空钛合金材料高温裂纹扩展性能对比试验[J].航空动力学报,2017,32(11):2713-2720. L Zhiyang,XIONG Junjiang,MA Shaojun,et al.Comparative experiment of high-temperature crack propagative behaviors for four kinds of typical titanium alloys[J].Journal of Aerospace Power,2017,32(11):2713-2720.(in Chinese)
    [12] 邹煜申.含硬α夹杂钛合金轮盘疲劳裂纹扩展特性研究[D].杭州:浙江大学,2018. ZOU Yushen.Research on fatigue crack growth characteristic of titanium disk with interior hard alpha[D].Hangzhou:Zhejiang University,2018.(in Chinese)
    [13] 江有为.某GH4169涡轮盘裂纹扩展研究[D].杭州:浙江大学,2016. JIANG Youwei.Fatigue crack growth research of a GH4169 power turbine disc[D].Hangzhou:Zhejiang University,2016.(in Chinese)
    [14] 陶春虎,习年生,张卫方,等.断口反推疲劳应力的新进展[J].航空材料学报,2000,30(3):158-163. TAO Chunhu,XI Niansheng,ZHANG Weifang,et al.Resent development of fractographic restrostimationon determining fatigue stress[J].Journal of Aeronautical Materials,2000,30(3):158-163.(in Chinese)
    [15] 张卫方,陶春虎,习年生,等.断口反推疲劳应力及其在叶片断裂分析中的应用[J].材料工程,2003(1):38-41. ZHANG Weifang,TAO Chunhu,XI Niansheng,et al.Fractography retroestimating fatigue stress and its application on blade fracture analysis in engineering[J].Journal of Materials Engineering,2003(1):38-41.(in Chinese)
    [16] 张智轩,石多奇,杨晓光.含销钉孔边裂纹的某压气机轮盘裂纹扩展分析[J].航空动力学报,2016,31(3):567-574. ZHANG Zhixuan,SHI Duoqi,YANG Xiaoguang.Analysis of crack propagation for a compressor disk with cracks on pin holes[J].Journal of Aerospace Power,2016,31(3):567-574.(in Chinese)
    [17] DAS P S.Three-dimensional structural evaluation of a gas turbine engine rotor[R].Düsseldorf,Germany:ASME Turbo Expo,2014.
    [18] 刘睿.钛合金动态断裂韧性测试方法及断裂行为的研究[D].北京:北京有色金属研究总院,2010. LIU Rui.Study on the dynamic fracture toughness test method and fracture behavior of titanium alloys[D].Beijing:General Research Institute of Nonferrous Metals,2010.(in Chinese)
  • 加载中
计量
  • 文章访问数:  441
  • HTML浏览量:  1
  • PDF量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-30
  • 刊出日期:  2020-02-28

目录

    /

    返回文章
    返回