留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉动来流对涡轮非定常气动性能影响机理

吉冰 李军 王志多

吉冰, 李军, 王志多. 脉动来流对涡轮非定常气动性能影响机理[J]. 航空动力学报, 2020, 35(2): 410-421. doi: 10.13224/j.cnki.jasp.2020.02.020
引用本文: 吉冰, 李军, 王志多. 脉动来流对涡轮非定常气动性能影响机理[J]. 航空动力学报, 2020, 35(2): 410-421. doi: 10.13224/j.cnki.jasp.2020.02.020
JI Bing, LI Jun, WANG Zhiduo. Effect mechanism of pulsating flow on unsteady aerodynamic performance of turbine[J]. Journal of Aerospace Power, 2020, 35(2): 410-421. doi: 10.13224/j.cnki.jasp.2020.02.020
Citation: JI Bing, LI Jun, WANG Zhiduo. Effect mechanism of pulsating flow on unsteady aerodynamic performance of turbine[J]. Journal of Aerospace Power, 2020, 35(2): 410-421. doi: 10.13224/j.cnki.jasp.2020.02.020

脉动来流对涡轮非定常气动性能影响机理

doi: 10.13224/j.cnki.jasp.2020.02.020

Effect mechanism of pulsating flow on unsteady aerodynamic performance of turbine

  • 摘要: 以周期性脉动来流模拟旋转爆震燃烧室出口流场,研究了来流脉动幅值和频率对GE-E3高压涡轮级非定常内流特性的影响机理。结果表明:来流脉动幅值的增加会加强涡轮内部流场的非定常性,放大流场参数的时空差异;随着脉动频率的增加,涡轮内部流场的脉动幅值逐渐减弱,不同动叶时均载荷分布趋于一致。在来流脉动频率为5 244 Hz的条件下,来流脉动系数逐步增加到04时,涡轮效率降低1399%;而在来流脉动系数为03的条件下,来流脉动频率逐步增加到10 488 Hz时,涡轮效率降低1557%。来流脉动幅值和频率的增加会加剧端壁二次流动和叶栅流动分离,并使得动叶进气攻角偏离设计状态,降低涡轮的工作效率。

     

  • [1] LU F K,BRAUN E M.Rotating detonation wave propulsion:experimental challenges,modeling,and engine concepts[J].Journal of Propulsion and Power,2014,30(5):1-18.
    [2] WINTENBERGER E,SHEPHERD J E.Thermodynamic cycle analysis for propagating detonations[J].Journal of Propulsion and Power,2006,22(3):694-698.
    [3] BYKOVSKII F A,ZHDAN S A.Current status of research of continuous detonation in fuel-air mixtures[J].Combustion,Explosion and Shock Waves,2015,51(1):21-35.
    [4] FROLOV S M,DUBROVSKII A V,IVANOV V S.Three-dimensional numerical simulation of the of the operation of the rotating-detonation chamber[J].Russian Journal of Physical Chemistry:B,2012,6(2):276-288.
    [5] 王超,刘卫东,刘世杰,等.连续旋转爆震波的瞬时传播特性[J].航空动力学报,2015,30(11):2600-2606. WANG Chao,LIU Weidong,LIU Shijie,et al.Instantaneous propagation characteristics of continuous rotating detonation wave[J].Journal of Aerospace Power,2015,30(11):2600-2606.(in Chinese)
    [6] 马虎,张义宁,杨成龙,等.燃料分布对旋转爆震波传播特性影响[J].航空动力学报,2019,34(3):513-520. MA Hu,ZHANG Yining,YANG Chenglong,et al.Effects of fuel distribution on propagation of rotating detonation wave[J].Journal of Aerospace Power,2019,34(3):513-520.(in Chinese)
    [7] 孙健,周进,林志勇,等.燃烧室轴向长度对旋转爆震发动机性能的影响[J].航空动力学报,2016,31(9):2080-2086. SUN Jian,ZHOU Jin,LIN Zhiyong,et al.Influence of chamber length on rotating detonation engine performance[J].Journal of Aerospace Power,2016,31(9):2080-2086.(in Chinese)
    [8] 陈洁,王栋,马虎,等.轴向长度对旋转爆震发动机的影响[J].航空动力学报,2013,28(4):844-849. CHEN Jie,WANG Dong,MA Hu,et al.Influence of axial length on rotating detonation engine[J].Journal of Aerospace Power,2013,28(4):844-849.(in Chinese)
    [9] ETO S,TSUBOI N,TAKAYUKI K,et al.Three-dimensional numerical simulation of a rotating detonation engine:effects of the throat of a converging-diverging nozzle on engine performance[J].Combustion Science and Technology,2016,188(11/12):2105-2116.
    [10] JOURDAINE N,TSUBOI N,OZAWA K,et al.Three-dimensional numerical thrust performance analysis of hydrogen fuel mixture rotating detonation engine with aerospike nozzle[J].Proceedings of the Combustion Institute,2019,37(3):3443-3451.
    [11] 高剑,马虎,裴晨曦,等.喷管对旋转爆震发动机性能影响的实验[J].航空动力学报,2016,31(10):2443-2453. GAO Jian,MA Hu,PEI Chenxi,et al.Experiment of effect of nozzle shapes on the performance of rotating detonation engine[J].Journal of Aerospace Power,2016,31(10):2443-2453.(in Chinese)
    [12] RANKIN B A,HOKE J,SCHAUER F.Periodic exhaust flow through a converging-diverging nozzle downstream of a rotating detonation engine[R].AIAA-2014-1015,2014.
    [13] PAXSON D E,NAPLES A.Numerical and analytical assessment of a coupled rotating detonation engine and turbine experiment[R].AIAA-2017-1746,2017.
    [14] ZHOU Rui,WU Dan,WANG Jianping.Progress of continuously rotating detonation engines[J].Chinese Journal of Aeronautics,2016,29(1):15-29.
    [15] WOLAN′SKI P.Application of the continuous rotating detonation to gas turbine[J].Applied Mechanics and Materials,2015,782:3-12.
    [16] FROLOV S M,DUBROVSKII A V,IVANOV V S.Three-dimensional numerical simulation of a continuously rotating detonation in the annular combustion chamber with a wide gap and separate delivery of fuel and oxidizer[J].Progress in Propulsion Physics,2016,8:375-388.
    [17] LIU Z,BRAUN J,PANIAGUA G.Characterization of a supersonic turbine downstream of a rotating detonation combustor[J].Journal of Engineering for Gas Turbines and Power,2019,141(3):1-13.
    [18] 周胜兵,马虎,李帅,等.旋转爆震燃烧室与涡轮导向器组合实验研究[J].气体物理,2018,3(1):28-33. ZHOU Shengbing,MA Hu,LI Shuai,et al.Combinatorial experiment research on rotating detonation combustor and turbine guide vane[J].Physics of Gases,2018,3(1):28-33.(in Chinese)
    [19] 计自飞,张会强,谢峤峰,等.连续旋转爆震涡轮发动机热力过程与性能分析[J].清华大学学报(自然科学版),2018,58(10):899-950. JI Zifei,ZHANG Huiqiang,XIE Qiaofeng,et al.Thermodynamic process and performance analysis of the continuous rotating detonation turbine engine[J].Journal of Tsinghua University (Science and Technolgy),2018,58(10):899-950.(in Chinese)
    [20] TIMKO L.Energy efficient engine high pressure turbine component test performance report[R].NASA-CR-168289,1984.
    [21] CLARK J P,GROVER E A.Assessing convergence in predictions of periodic-unsteady flow fields[J].Journal of Turbomachinery,2007,129(4):740-749.
    [22] SURESH A,HOFER D C,TANGIRALA V E.Turbine efficiency for unsteady,periodic flows[J].Journal of Turbomachinery,2012,134(3):34501-34506.
  • 加载中
计量
  • 文章访问数:  454
  • HTML浏览量:  0
  • PDF量:  472
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 刊出日期:  2020-02-28

目录

    /

    返回文章
    返回