留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向一体化计算的整体式液体冲压发动机建模及性能评估

韩永恒 李高春 强洪夫

韩永恒, 李高春, 强洪夫. 面向一体化计算的整体式液体冲压发动机建模及性能评估[J]. 航空动力学报, 2020, 35(3): 597-610. doi: 10.13224/j.cnki.jasp.2020.03.016
引用本文: 韩永恒, 李高春, 强洪夫. 面向一体化计算的整体式液体冲压发动机建模及性能评估[J]. 航空动力学报, 2020, 35(3): 597-610. doi: 10.13224/j.cnki.jasp.2020.03.016
HAN Yongheng, LI Gaochun, QIANG Hongfu. Integration algorithm oriented modeling and performance evaluation on integrated liquid fuel ramjet[J]. Journal of Aerospace Power, 2020, 35(3): 597-610. doi: 10.13224/j.cnki.jasp.2020.03.016
Citation: HAN Yongheng, LI Gaochun, QIANG Hongfu. Integration algorithm oriented modeling and performance evaluation on integrated liquid fuel ramjet[J]. Journal of Aerospace Power, 2020, 35(3): 597-610. doi: 10.13224/j.cnki.jasp.2020.03.016

面向一体化计算的整体式液体冲压发动机建模及性能评估

doi: 10.13224/j.cnki.jasp.2020.03.016

Integration algorithm oriented modeling and performance evaluation on integrated liquid fuel ramjet

  • 摘要: 为发展冲压发动机性能工程预估方法,建立了面向一体化计算的整体式液体冲压发动机性能计算模型,并使其兼容基团贡献算法,提高了拓展性。利用模型分析了冲压发动机在攻角0°~6°、高度0~18km、马赫数2.0~3.5、余气系数1.0~2.9范围工况多维度连续变化下,比冲、推力系数和燃油质量流量的速度-高度特性、高度-节流特性、节流-速度特性以及攻角特性。研究结果表明:性能计算模型可在一体化计算条件下、基团贡献算法允许范围内,不依赖试验数据对冲压发动机性能预估,计算结果与技术参考值相比相对误差均小于14%。推力系数和比冲具有基本一致的速度-高度特性和相似的高度-节流特性,受燃气组分影响,推力系数和比冲的节流-速度特性差异明显。燃油质量流量的变化规律不同于比冲和推力系数,在进入平流层后呈现折缓趋势,而呈现连续性,速度越大、高度越低、余气系数越小,燃油质量流量越高,反之则越小。引入攻角以后,攻角越大,比冲和推力系数越低,进气道起动马赫数越高;攻角-起动马赫数曲线小范围内近似线性,攻角超过5.6°非线性加剧。

     

  • [1] 郑日恒.冲压发动机技术的发展动向与评论[J].飞航导弹,2004(1):44-48.
    [2] WALTRUP P J,WHITE M E,ZARLINGO E,et al.History of U.S. navy ramjet,scramjet,and mixed-cycle propulsion development[J].Journal of Propulsion and Power,2002,18(1):14-27.
    [3] RONALD S F.A century of ramjet propulsion technology evolution[J].Journal of Propulsion and Power,2004,20(1):27-58.
    [4] 吴颖川,贺元元,贺伟,等.吸气式高超声速飞行器机体推进一体化技术研究进展[J].航空学报,2015,36(1):245-260. WU Yingchuan,HE Yuanyuan,HE Wei,et al.Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J].Acta Aeronautica et Astronautica Sinica,2015,36(1):245-260.(in Chinese)
    [5] 赵保平,张韬.超声速飞行器环境工程中的力学问题[J].中国科学(物理学·力学·天文学),2019,49(2):44-53. ZHAO Baoping,ZHANG Tao.Mechanical problems in supersonic vehicle environmental engineering[J].Scientia Sinica Physica,Mechanica and Astronomica,2019,49(2):44-53 (in Chinese)
    [6] 胡建新,张为华,夏智勋,等.冲压推进技术[M].长沙:国防科技大学出版社,2013.
    [7] 田野,肖保国,张顺平,等.双模态冲压发动机燃烧性能初步研究[J].航空动力学报,2016,31(12):2921-2927. TIAN Ye,XIAO Baoguo,ZHANG Shunping,et al.Preliminary study on combustion performance of dual-model scramjet engine[J].Journal of Aerospace Power,2016,31(12):2921-2927.(in Chinese)
    [8] SARAVANAN R,DESIKAN S L N,MURUGANANDAM T M.Effect of back pressure and freestream dynamic pressure on a typical ramjet engine duct under realistic supersonic inlet condition[J].The Aeronautical Journal,2018,122(1247):83-103.
    [9] 郭帅涛,李祝飞,高文智,等.攻角与马赫数对进气道起动影响的可比拟性[J].推进技术,2017,38(5):983-991. GUO Shuaitao,LI Zhufei,GAO Wenzhi,et al.Analogy between effects of attack angle and Mach number on inlet starting[J].Journal of Propulsion Technology,2017,38(5):983-991.(in Chinese)
    [10] 袁书生,王玉峰,李高春,等.冲压发动机燃烧室三维流场数值模拟[J].航空动力学报,2005,20(5):841-846. YUAN Shusheng,WANG Yufeng,LI Gaochun,et al.Numerical simulation of three-dimensional flows in a ramjet combustor[J].Journal of Aerospace Power,2005,20(5):841-846.(in Chinese)
    [11] MURTY M S R C,DEBASIS C.Coupled external and internal flow simulation of a liquid fuelled ramjet vehicle[J].Aerospace Science and Technology,2014,36:1-4.
    [12] 秦飞,何国强,刘佩进.突扩燃烧室低频燃烧不稳定形成机理分析[J].推进技术,2010,31(5):523-528. QIN Fei,HE Guoqiang,LIU Peijin.Investigation on mechanism of low frequency combustion instabilities in a dump combustor[J].Journal of Propulsion Technology,2010,31(5):523-528.(in Chinese)
    [13] 刘兴洲.飞航导弹动力装置(上)[M].北京:宇航出版社,1992.
    [14] CHIANG H R.A computer based model for the performance analysis of a scramjet propulsion system[D].Cambridge,US:Massachusetts Institute of Technology,1989.
    [15] PETTERS D P,LEINGANG J L.Rapid computer simulation of ramjet performance[R].AIAA 93-2049,1993.
    [16] 段晰怀,郑日恒,李立翰.基于亚燃的高超声速冲压发动机内流道研究[J].航空学报,2015,36(1):232-244. DUAN Xihuai,ZHENG Riheng,LI Lihan.Internal flowpath for hypersonic ramjet based on subsonic combustion[J].Acta Aeronautica et Astronautica sinica,2015,36(1):232-244.(in Chinese)
    [17] 徐旭.冲压发动机原理及技术[M].北京:北京航空航天大学出版社,2014.
    [18] 刘凯礼,张堃元.二元高超声速进气道动态攻角特性风洞实验[J].推进技术,2012,33(1):14-19.LIU Kaili,ZHANG Kunyuan.Experiment of 2-D hypersonic inlet on dynamic characteristic with angle-of-attack[J].Journal of Propulsion Technology,2012,33(1):14-19.(in Chinese)
    [19] 谢文忠,郭荣伟.4种布局形式下超声速飞行器进气道气动特性实验对比[J].南京航空航天大学学报,2011,43(1):13-17. XIE Wenzhong,GUO Rongwei.Mixed-compression supersonic inlets based on four air-breathing aircraft configurations[J].Journal of Nanjing University of Aeronautics and Astronautics,2011,43(1):13-17.(in Chinese)
    [20] 刘锬韬.某型冲压发动机进气道流场数值模拟[D].山东 烟台:海军航空工程学院,2014. LIU Tantao.Numerical research of flow field of a certain type ramjet intake[D].Yantai Shandong:Naval Aeronautical Engineering Insititute,2014.(in Chinese)
    [21] 原渭兰,吕卫民,贾忠湖.气体动力学[M].北京:科学出版社,2013.
    [22] 乐川,徐大军,蔡国飙.超声速溢流条件下二元超声速进气道附加阻力计算[J].航空动力学报,2010,25(11):2431-2436. YUE Chuan,XU Dajun,CAI Guobiao.Calculation of additional drag coefficient of supersonic inlet under supersonic spillage condition[J].Journal of Aerospace Power,2010,25(11):2431-2436.(in Chinese)
    [23] 杨月诚,宁超.火箭发动机理论基础[M].西安:西北工业大学出版社,2016.
    [24] TURNS S R.An introduction to combustion:concepts and applications[M].Boston,US:McGraw-Hill Book Company,2011.
    [25] OSMONT A,GKALP I,CATOIRE L.Evaluating missile fuels[J].Propellants,Explosives,Pyrotechnics,2006,31(5):343-354.
    [26] CHOPEY N P,HICKS T G.Handbook of chemical engineering calculations[M].New York:McGraw-Hill Book Company,Inc.,2012.
    [27] 刘小勇,张香文,方文军,等.吸气式发动机燃料研究进展及展望[J].推进技术,2018,39(10):2191-2195.
  • 加载中
计量
  • 文章访问数:  389
  • HTML浏览量:  4
  • PDF量:  424
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-13
  • 刊出日期:  2020-03-28

目录

    /

    返回文章
    返回