留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导弹头部融合旋成体构型实现及气动优化

唐啸 莫然 陈俊杰

唐啸, 莫然, 陈俊杰. 导弹头部融合旋成体构型实现及气动优化[J]. 航空动力学报, 2020, 35(7): 1383-1391. doi: 10.13224/j.cnki.jasp.2020.07.006
引用本文: 唐啸, 莫然, 陈俊杰. 导弹头部融合旋成体构型实现及气动优化[J]. 航空动力学报, 2020, 35(7): 1383-1391. doi: 10.13224/j.cnki.jasp.2020.07.006
TANG Xiao, MO Ran, CHEN Junjie. Realization and aerodynamic optimization of flat-nosed hypersonic missile integrated with an axis-symmetrical front-tip[J]. Journal of Aerospace Power, 2020, 35(7): 1383-1391. doi: 10.13224/j.cnki.jasp.2020.07.006
Citation: TANG Xiao, MO Ran, CHEN Junjie. Realization and aerodynamic optimization of flat-nosed hypersonic missile integrated with an axis-symmetrical front-tip[J]. Journal of Aerospace Power, 2020, 35(7): 1383-1391. doi: 10.13224/j.cnki.jasp.2020.07.006

导弹头部融合旋成体构型实现及气动优化

doi: 10.13224/j.cnki.jasp.2020.07.006
基金项目: 国家自然科学基金(11572347,11872071)

Realization and aerodynamic optimization of flat-nosed hypersonic missile integrated with an axis-symmetrical front-tip

  • 摘要: 为解决扁平导弹头部空间利用率低,天线罩加工困难且电气性能差的问题,采用形状函数变换技术(CST)造型法在其前端融入旋成体,并提出“旋成体埋头角”以实现融合区域光滑过渡。CFD计算得到旋成体弹头、扁平弹头、和“旋成体埋头角”为0°~5°时融合弹头的气动性能,结果表明:旋成体弹头、“无埋头”融合弹头和“有埋头”融合弹头的最大升阻比分别为扁平弹头的8158%、8616%和8946%。以最大升力系数和最大升阻比为目标对“旋成体埋头角”为2°和3°的融合弹头进行优化计算,在Pareto前缘中,随着旋成体末端半径从150 mm增大至210 mm,两构型的最大升力系数分别上升599%和416%,最大升阻比分别下降1996%和1839%。此外,当旋成体末端半径小于165 mm时,上述2°构型的最大升阻较大(峰值可达扁平弹头的9779%),反之上述3°构型构型的最大升阻较大。

     

  • [1] LELE A.Disruptive technologies for the militaries and security[M].Singapore City:Springer,2019:70-75.
    [2] ANDERSON J D.空天飞行导论[M].张为华,李健,向敏,译.7版.北京:国防工业出版社,2014:326-335.
    [3] MASTERS D A,POOLE D J,TAYLOR N J,et al.Influence of shape parameterization on a benchmark aerodynamic optimization problem[J].Journal of Aircraft,2017,54(6):2242-2256.
    [4] DENG Fan,JIAO Zihan,LIANG Bingbing,et al.Spike effects on drag reduction for hypersonic lifting body[J].Journal of Spacecraft and Rockets,2017,54(6):1185-1195.
    [5] PAMADI B N.Performance,stability,dynamics,and control of airplanes[M].Washington DC:American Institute of Aeronautics and Astronautics,2004:8-20.
    [6] 罗金玲,徐敏,刘杰.一体化外形的高超声速飞行器升阻特性研究[J].宇航学报,2007,28(6):1478-1481. LUO Jinling,XU Min,LIU Jie.Research on lift and drag characteristics for the integrated configuration of hypersonic vehicle[J].Journal of Astronautics,2007,28(6):1478-1481.(in Chinese)
    [7] LIU Shangji,ZHOU Huiyuan,DING Chang,et al.Electrical properties analysis of conical radome[C]∥Proceedings of 2016 IEEE International Conference on Ubiquitous Wireless Broadband(ICUWB).Nanjing:IEEE,2016:1-4.
    [8] KHATAVKAR N,BALASUBRAMANIAN K.Composite materials for supersonic aircraft radomes with ameliorated radio frequency transmission-a review[J].RSC Advances,2016,6(8):6709-6718.
    [9] KANDI K K,THALLAPALLI N,CHILAKALAPALLI S P R.Development of silicon nitride-based ceramic radomes-a review[J].International Journal of Applied Ceramic Technology,2015,12(5):909-920.
    [10] 郭东明,娄鑫,王晓明,等.面向导弹天线罩精密加工的三维曲面重构[J].机械工程学报,2001,37(9):92-95. GUO Dongming,LOU Xin,WANG Xiaoming,et al.Reconstruction of the 3D surface for precision machining of missile radome[J].Journal of Mechanical Engineering,2001,37(9):92-95.(in Chinese)
    [11] 李斌,张长瑞,曹峰,等.高超音速导弹天线罩设计与制备中的关键问题分析[J].科技导报,2006,24(8):28-31. LI Bin,ZHANG Changrui,CAO Feng,et al.Key issues in designing and preparing hypersonic missile radomes[J].Science and Technology Review,2006,24(8):28-31.(in Chinese)
    [12] GREY Z J,CONSTANTINE P G.Active subspaces of airfoil shape parameterizations[J].AIAA Journal,2017,56(5):2003-2017.
    [13] ZHANG Tiantian,WANG Zhenguo,HUANG Wei,et al.A review of parametric approaches specific to aerodynamic design process[J].Acta Astronaut,2018,145:319-331.
    [14] LEE C,KOO D,ZINGG D W.Comparison of B-spline surface and free-form deformation geometry control for aerodynamic optimization[J].AIAA Journal,2016,55(1):1-13.
    [15] LIANG Changping,LI Huaxing.Aerofoil optimization for improving the power performance of a vertical axis wind turbine using multiple streamtube model and genetic algorithm[J].Royal Society Open Science,2018,5(7):180540.1-180540.15.
    [16] 薛帮猛,邓捷.改进的CST和面向CAD建模的民机机翼参数化方法[J].航空计算技术,2018,48(4):15-19. XUE Bangmeng,DENG Jie.A modified CST representation method and CAD oriented wing parameterization of civil aircrafts[J].Aeronautical Computing Technique,2018,48(4):15-19.(in Chinese)
    [17] STRAATHOF M H,MICHEL V T.Extension to the lass-shape-transformation method based on B-splines[J].AIAA Journal,2011,49(4):780-790.
    [18] 游进,夏智勋,王登攀,等.高超声速进气道再起动特性及其影响因素数值模拟[J].固体火箭技术,2011,34(2):161-166. YOU Jin,XIA Zhixun,WANG Dengpan,et al.Numerical study on influencing factors of restarting characteristics for a hypersonic inlet[J].Journal of Solid Rocket Technology,2011,34(2):161-166.(in Chinese)
    [19] 刘伟,杨小亮,赵海,等.高超声速圆锥边界层转捩数值研究[J].空气动力学学报,2008,26(4):538-543. LIU Wei,YANG Xiaoliang,ZHAO Hai,et al.Numerical study on hypersonic boundary layer transition over a sharp cone[J].Acta Aerodynamica Sinica,2008,26(4):538-543.(in Chinese)
    [20] 马小亮,杨国伟.湍流模型计算比较研究[C]∥第十三届全国激波与激波管学术会议论文集.长沙:中国力学学会,2008:396-401.
    [21] 张翔,阎超.高超声速热流计算湍流模型性能评估[J].北京航空航天大学学报,2015,41(2):337-342. ZHANG Xiang,YAN Chao.Property evaluation on turbulence models calculation in hypersonic heat transfer simulation[J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(2):337-342.(in Chinese)
    [22] 蒙泽威,范晓樯,陶渊,等.超声速V形前缘热流计算与分析[C]∥中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集——发动机热管理技术.辽宁 大连:中国航天第三专业信息网,2017:47-54.
    [23] 唐伟,江定武,桂业伟,等.旋成体导弹头部母线线型的选择问题研究[J].空气动力学学报,2010,28(2):218-221.
  • 加载中
计量
  • 文章访问数:  381
  • HTML浏览量:  11
  • PDF量:  649
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 刊出日期:  2020-07-28

目录

    /

    返回文章
    返回